
Computer Science

Management of Speedup Mechanisms in Learning
Architectures

John Cheng

January 1995
CMU-CS-95-112 Accesi

NTIS

1* i -3
%tf*^

SDT1C
ELECTE |%
MAR 2 019951 I

G

pi*»

1, ?.&&

Mellon

19950317 117 äifeTftMtTOM STATEMENT A

Approved for public release;
Distribution Unlimited

Management of Speedup Mechanisms in Learning
Architectures

John Cheng

January 1995
CMU-CS-95-112 Accesion For

NTIS CRA&i
DTIC TAB
Unannounced
Justification

School of Computer Science
Carnegie MeUon University
Pittsburgh, PA 15213-3891

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

By
Distribution /

D

Availability Codes

Dist

-/

Avail and /or
Special

Thesis Committee:

Tom Mitchell, Chair
Jaime Carbonell

Jill Lehman
John Laird

I

Copyright ©1995 John Cheng

This research is sponsored by the Wright Laboratory, Aeronautical Systems Cen-
ter, Air Force Materiel Command, USAF, and the Advanced Research Projects Agency
(ARPA) under grant F33615-93-1-1330. The US Government is authorized to reproduce
and distribute reprints for Government purposes, notwithstanding any copyright notation
thereon. Views and conclusions contained in this document are those of the authors and
should not be interpreted as representing the official policies, either expressed or implied,
of Wright Laboratory or the United States Government.

I>; ''■,' 'RIB 0'' Or, QY l tr. >-:M Y2TJ' >; T

£ b- :>r&v :.;. ii ii QV.li re '.ease;
Dis LXI 0 .•:iioi ~ 1V- '. r.aiv d

Keywords: Artificial Intelligence, Machine Learning, Learning Archi-
tectures, Speedup Learning, Multi-strategy learning, Theo

arnegie
ellon

School of Computer Science

DOCTORAL THESIS
in the field of

Computer Science

Management of Speedup Mechanisms
in Learning Architectures

JOHN CHENG

Submitted in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy

ACCEPTED:

i3^S DEPARTMENT HEAD

Oc?v\ i/a.vy «? 7 II 75 V-

^A-
DATE

DATE

APPROVED:

12^-i^M
DEAN

l/30/?5-
DATE

Abstract

Learning architectures typically operate rather inefficiently. To increase per-
formance, two strategies are commonly used: speedup mechanisms are in-
corporated into the architecture, and architecture operation is simplified.
Unfortunately, both these strategies have drawbacks.
Because of the utility problem, inappropriate use of speedup mechanisms
can actually decrease system efficiency. Hence, good speedup mechanism
management - deciding when, where, and which speedup mechanism to use
- is important if the mechanisms are to be effective. Typically, however, good
management strategies are not available. Architecture-provided strategies
are usually very simple, and cannot use the mechanisms appropriately all the
time. Good user-provided strategies are also difficult to develop - under a
complex system or domain, it can be difficult to understand system behavior
well enough to specify a good management strategy. Furthermore, user or
architecture-provided management techniques are usually fixed, and cannot
adapt to environment dynamics. Hence, lack of good management strategies
limit the effectiveness of speedup mechanisms.
Simplifying an architecture's inference mechanism yields dramatic efficiency
gains. Unfortunately, gaining efficiency in this manner usually sacrifices
fine-grain control over the behavior of the system, or architecture flexibility.
Consequently, this speedup technique forces the domain designer to operate
at the flexibility /efficiency tradeoff point chosen by the architecture.
This thesis investigates ways of handling both of these problems. The
speedup mechanism management problem is approached by making the
architecture itself responsible for developing a management strategy. An
agent, embedded into the architecture, observes system operation, invoking
speedup mechanisms appropriately. This approach allows the architecture
to tailor its strategies individually to different domains, increasing speedup
mechanism usefulness. Furthermore, because the agent can monitor the
architecture continuously, it can adapt its management strategies to the
dynamics of the environment.
This dissertation also presents an algorithm that can be used to reduce the
flexibility /efficiency constraints on the domain designer, giving him more
options. The designer is allowed architecture flexibility, but if flexibility is
not needed, the unnecessary flexibility is automatically traded for efficiency.

Acknowledgements

I would like to thank my advisor Tom Mitchell for all of his wonderful
insights and guidance. Working with Tom has been a truly remarkable
experience. Without his ideas and enthusiasm, this work could not have
been been completed.

I would also like to thank the other members of my thesis committee -
Jaime Carbonell, Jill Lehman, and John Laird - for some very good research
and presentation ideas and feedback.

I would like to thank all of my friends who have made life in Pittsburgh so
enjoyable - in particular, Karen Miller, Mei Wang, Keith Gremban, Mark
Maimone, Chris Holt, Dave Pessoa, the volleyball gang and the ballroom
dancing crowd. Finally, I would like to thank my parents and sisters for their
support and encouragement of my educational - and other - endeavors.

Contents

Introduction 1
1.1 Overview 1

1.1.1 Speedup Mechanisms 1
1.1.2 Reducing Architecture Flexibility 2

1.2 Thesis Goals 4
1.2.1 Speedup Mechanism Management Approach 5
1.2.2 Reducing Efficiency-Flexibility Constraints 5

1.3 Experimental Results Summary 6
1.4 Thesis Organization 6

Theo Overview 8
2.1 Theo Representation 8
2.2 Theo Inference 10

2.2.1 Low-Level Inference 10
2.2.2 High-Level Inference 11
2.2.3 Meta-Level Inference 13
2.2.4 Prolog Rules 13

2.3 Speedup Mechanisms 15
2.3.1 Caching 15
2.3.2 Explanation-Based Generalization 16
2.3.3 Bounded-Cost EBG 17

ISM Overview 20
3.1 ISM Performance Goals 20

3.1.1 ISM Constraints 20
3.1.2 ISM Speedup Goals 21

3.2 ISM Goal Consequences 22
3.2.1 Adaptivity 22

3.2.2 Goal-Induced ISM Limitations 23
3.3 ISM Approach 24

3.3.1 Dynamic Strategy 25
3.3.2 Static Strategy 26

3.4 General Issues 26
3.5 Summary 27

Managing Speedup Mechanisms 28
4.1 Speedup Mechanism Utility 28

4.1.1 Caching 30
4.1.2 EBG 36
4.1.3 Bounded-Cost EBG 43

4.2 Managing Speedup Mechanisms 46
4.2.1 Possible Management Strategies 47
4.2.2 ISM's Management Strategy 48

4.3 Experiments 50
4.3.1 Utility Approximations 50
4.3.2 Management Strategy 56

4.4 Managing Additional Speedup Mechanisms 56
4.4.1 A Brief Example 57

4.5 Summary 59

Reducing the System Efficiency/Flexibility Tradeoff 61
5.1 Theo's Inference 62
5.2 Inefficient Meta-Level Inference 63
5.3 Meta-Level Inference and Architecture Flexibility 65
5.4 Using Speedup Mechanisms to Increase Efficiency 68

5.4.1 Caching 68
5.4.2 EBG 69

5.5 Algorithm Overview 69
5.6 Algorithm 71
5.7 An Example 74
5.8 Algorithm Limitations 76
5.9 Summary 77

Managing ISM Overhead 78
6.1 The Problem 78
6.2 Adaptive Sensing 79

6.2.1 Strategy 82

6.3 Phasic Sensing 87
6.3.1 Caching 88
6.3.2 EBG and BEBG 89

6.4 Adaptive Sensing and Phasic Sensing 90
6.4.1 Caching 90
6.4.2 EBG 93
6.4.3 BEBG 94

6.5 Overhead Management Performance 94
6.5.1 Overhead Calculations 95
6.5.2 Performance 96

Experimental Results 99
7.1 Test Domains 99

7.1.1 Calendar Apprentice 99
7.1.2 E-Mail Notification 101

7.2 Domain Characteristics 102
7.2.1 CAP 102
7.2.2 MN 103

7.3 Experimental Results 104
7.3.1 CAP Experiments 106
7.3.2 MN Experiments 122
7.3.3 Simulated Domain Experiments 130

7.4 Summary 132

Related Work 136
8.1 Learning Mechanism Management 136

8.1.1 Utility Analyses 136
8.1.2 Restricting Expressiveness 137
8.1.3 Goal-Driven Learning 138

8.2 "Static" Inference Mechanism Optimization 140
8.3 Summary 141

Conclusion 143
9.1 Automatic Speedup Mechanism Management 143

9.1.1 Decision Criteria 144
9.1.2 Overhead Management 145

9.2 "Static" Inference Mechanism Optimization 146
9.3 Performance 146
9.4 General Lessons 147

in

9.4.1 Automatic Speedup Mechanism Management 147
9.4.2 Static Inference Optimization 150

9.5 Future Work 150

IV

List of Figures

1.1 An Object/Class Hierarchy 3

4.1 Interfering Speedup Mechanism Management Actions 49
4.2 Non-Interfering Speedup Mechanism Management Actions . . 49
4.3 Ideal and Estimated Caching Utilities 51
4.4 Ideal and Estimated Marginal EBG Utilities 54
4.5 Ideal and Estimated Marginal BEBG Utilities 55
4.6 Management Strategy Performance: inference time (seconds) 56

5.1 Inference Paths for (square height) 64
5.2 A Knowledge-Base Fragment 67
5.3 Useful and Useless Methods for Height 75

6.1 ISM With and Without Adaptive Sensing 86
6.2 ISM With Adaptive and Phasic Sensing 91
6.3 ISM Sensor Time Costs (seconds x 10,000) 95
6.4 ISM Overhead per Inference 96
6.5 Overhead Management Schemes versus Caching Decision Count 97
6.6 Overhead Management Schemes versus Performance 97

7.1 Cumulative Number of Theo Inferences versus Number of
Top-Level CAP Operations for Mitchell's Calendar 107

7.2 Cumulative Number of Theo Inferences versus Number of
Top-Level CAP Operations for Mason's Calendar 108

7.3 Cumulative Number of Theo Inferences versus Number of
Top-Level MN Inferences 109

7.4 Time Elapsed During Top-Level CAP Operation for Mitchell:
Theo versus ISM() 110

7.5 Elapsed Time During CAP Operation for Mason: Theo versus
ISMQ HI

7.6 Time Elapsed During Mitchell's CAP Operation: Theo versus
"Extended" ISM() 112

7.7 Time Elapsed During Mason's CAP Operation: Theo versus
"Extended" ISM() 113

7.8 Elapsed Time During Top-Level CAP Operation for Mitchell:
Theo versus ISM(cache) 115

7.9 Elapsed Time During Top-Level CAP Operation for Mason:
Theo versus ISM(cache) 116

7.10 Elapsed Time During CAP Operation for Mitchell: ISM(cache)
versus ISM(cache, EBG) and ISM(cache, EBG, BEBG) ... 118

7.11 Elapsed Time During Top-Level CAP Operation for Mason:
ISM(cache) versus ISM(cache, EBG) and ISM(cache, EBG, BEBG) 119

7.12 Elapsed Time During Top-Level CAP Operation for Mitchell:
FlexTheo verses Theo ' 120

7.13 Elapsed Time During CAP Operation for Mitchell: FlexTheo
with and without ISM 121

7.14 Time per Top-Level MN Inference: Theo versus ISM(cache) . 123
7.15 Time per Top-Level Inference in a Dynamic Domain: Theo

versus ISM(cache) 126
7.16 Cumulative Inference Time in a Dynamic Domain: Theo ver-

sus ISM(cache) 127
7.17 Time per Top-Level MN Operation: ISM(cache, EBG) versus

ISM(cache) 128
7.18 Time per Top-Level MN Operation: ISM(cache, EBG, BEBG)

versus ISM(cache, EBG) 129
7.19 MN Elapsed Time: Theo versus ISM(cache, EBG, BEBG) . . 131
7.20 Time per Top-Level Inference in an Oscillatory Domain: Theo

versus ISM(cache) 133
7.21 Elapsed Time in an Oscillatory Domain: Theo versus ISM(cache) 134

VI

Chapter 1

Introduction

1.1 Overview

As artificial intelligence has evolved, integrated architectures - architectures
that unify problem solving and learning methods, such as Soar [Laird 87],
Prodigy [Minton 87] and Theo [Mitchell 91] - have become very important
research tools. To be successful, an architecture must be flexible and pow-
erful enough to handle many domains with widely varying characteristics
and requirements. Unfortunately, such general-purpose architectures often
perform inefficiently. To increase performance, architecture designers have
used two strategies:

• Integrate speedup mechanisms with architectures

• Reduce architecture flexibility or functionality

The advantages and disadvantages of each of these tactics is discussed below.

1.1.1 Speedup Mechanisms

Adding speedup mechanisms - such as caching, explanation-based gener-
alization (EBG) [Mitchell 86], and chunking [Laird 87] - to architectures is
very common, and can be a very effective way of increasing system efficiency.
Virtually all architectures support one or several speedup mechanisms. Un-
fortunately, because of the utility problem, the existence of speedup mech-
anisms is no panacea. In its broadest form, the utility problem states that
inappropriate use of speedup mechanisms can decrease system performance.

Hence, using them can backfire. To realize the potential of speedup mech-
anisms, it is necessary to use them appropriately. Hence there must be an
effective management strategy determining when, where, and which mecha-
nisms to apply.

How do architectures typically handle speedup mechanism management?
Often, they rely on simple, naive, but generally effective schemes. For in-
stance, the Theo architecture supports caching and EBG. In general, caching
increases Theo performance. Hence, by default, Theo caches all query in-
stances. On the other hand, EBG in general decreases Theo performance.
If EBG is applied at every opportunity, the success rates of EBG rules tend
to be so low that rule application costs dominate the expected inference
time saved by the rules. Therefore, by default, Theo never uses EBG. The
drawback to this kind of management strategy is that, obviously, speedup
mechanisms are not being used appropriately all of the time. Although EBG
usually slows Theo down, there are situations for which EBG can drastically
increase system performance. Likewise, for some situations, caching can sig-
nificantly decrease system performance.

Architectures can also rely on humans to determine a speedup mecha-
nism management strategy. I.e., users or knowledge-base designers specify
the situations under which various speedup mechanisms should be invoked.
It can be almost impossible to specify a good management scheme, however.
Under a complex system or domain, it may be difficult to understand sys-
tem behavior well enough to specify a good management strategy. It can be
especially difficult to manage multiple speedup mechanisms. If several are
applicable in a situation, which one should be applied? Should they all be
applied? Can the mechanisms interact in some way, and if so, what are the
ramifications of this interaction? Finally, and most importantly, architec-
ture environment factors - such as query distributions - are dynamic, often
changing over time, making any fixed speedup strategies obsolete.

Because it is so difficult to manage speedup mechanisms effectively, in-
tegrating them with learning architectures does not necessarily result in
increased architecture performance. The management strategies discussed
above are too coarse-grained and inflexible to fully utilize the potential of
speedup mechanisms.

1.1.2 Reducing Architecture Flexibility

"Architecture flexibility" is the configurability of the architecture. For ex-
ample, assume that the user is interested in computing the area of a variety

Area

Circle Area Box Area Triangle Area

Circlel Area Tri2 Area Tril Area

Figure 1.1: An Object/Class Hierarchy

of different objects. For some sets of objects, the user might find it useful to
be able to specify different formulas for different classes of objects. A flexible
architecture allows this. Consider the object/class hierarchy in Figure 1.1.
Theo, which is a very flexible architecture, allows the user to specify differ-
ent inference methods (i.e., formulas) for every object class - for every node
in the hierarchy - so the user can use different formulas for circles, triangles,
and squares. On the other hand, an inflexible architecture such as TheoGT
[Mitchell 93], allows the user to specify only one inference method for the
entire object/class hierarchy. This can be very inconvenient for the user -
it is difficult for the user to specify the behavior of the architecture. This
example shows inference method flexibility - only one of many dimensions
of flexibility.

Reducing architecture flexibility increases architecture performance. Why
is this so? Consider inference method flexibility. Since a flexible architec-

ture supports multiple inference methods for every object/class hierarchy, it
must search for the correct inference method to apply for every problem. In-
flexible architectures do not require as much inference method search, since
fewer methods can be specified. For very inflexible architectures such as
TheoGT, no search is required. Hence, trading off flexibility for efficiency is
a practical strategy for increasing architecture performance.

The problem with this efficiency-increasing approach is not the flexibility-
efficiency tradeoff per se - it is the fact that the architecture forces the user or
knowledge-base designer to operate at a fixed trade-off point. For instance,
consider Theo and TheoGT. Assume a knowledge-base designer constructs a
domain for which half its inferences require Theo's flexibility. The designer
has only two options:

• Use Theo, and take coffee breaks.

• Use TheoGT after expending effort reformulating the domain.

I.e., the designer is constrained to operate at the flexibility-efficiency trade-
off points defined by Theo and TheoGT.

A superior approach would be to offer the designer more options: allow
him flexibility if he needs it, and increased performance if he doesn't - i.e.,
let the designer determine the flexibility-efficiency trade-off point via the
characteristics of the domain. If this were possible, the designer's domain
would operate correctly, and half of the designer's inferences would run
efficiently - giving him the best of both worlds.

1.2 Thesis Goals

The previous section summarized two strategies for increasing architecture
efficiency. Both of these strategies have problems. Speedup mechanisms
may not be effective, and can actually decrease system performance because
of the difficulty of managing speedup mechanisms. Reducing architecture
flexibility constrains the user or knowledge-base designer.

This thesis seeks to increase architecture efficiency by resolving the prob-
lems associated with the previously discussed strategies. Specifically, the
thesis of this research is:

• An architecture can autonomously and effectively manage multiple
speedup mechanisms. In particular, the management scheme should
be able to adapt to environment dynamics, and increase architecture
performance over a wide range of situations.

• An architecture can automatically reduce flexibility-efficiency constraints,
adapting to the requirements of the domain. That is, the architec-
ture allow flexibility if needed, but trade off unnecessary flexibility
for efficiency. Furthermore, the architecture should not require any
interaction with the user or knowledge-base designer.

1.2.1 Speedup Mechanism Management Approach

Given that speedup mechanisms need a flexible management scheme to be
effective, this thesis approaches the first goal by making the architecture
itself responsible for managing its speedup mechanisms. The approach con-
sidered in this thesis is to embed an agent into the architecture. Its job is
to continually monitor architecture operation, and invoke various speedup
mechanisms when appropriate.

What are the advantages of this approach?

• The speedup mechanism management responsibilities are off-loaded
from the user or knowledge-base designer.

• Because the agent can monitor architecture operation over the life of
the system, the agent can modify any management decisions to handle
environment dynamics. Hence, this approach is adaptive.

• The agent can monitor the architecture at a very fine-grained level.
Therefore, the agent can make very fine-grained management deci-
sions. Also, because the agent can monitor system behavior much
more thoroughly than any human, it can do a better job of analyzing
architecture operation and determining effective management schemes.

1.2.2 Reducing Efficiency-Flexibility Constraints

In general, architecture flexibility reduces efficiency because flexibility ne-
cessitates additional inference. This additional inference is needed guide the
operation of the system, and is called system-level or meta-level inference.
Hence, flexible architectures are less efficient than inflexible architectures
because of the meta-level inference required. Moreover, higher levels of ar-
chitecture flexibility require more extensive meta-level inference. However,
if the domain has been constructed in such a way that a high level of ar-
chitecture flexibility is not required, these extensive meta-level search paths
are unsuccessful. The time spent exploring these paths is wasted.

Meta-level inference has properties that make it amenable to analysis
prior to runtime. Using such a static analysis, it is possible to prune meta-
level search paths. That is, unsuccessful search paths can be truncated at
run-time, increasing architecture efficiency. Essentially, a static knowledge-
base analysis defines a meta-level inference boundary. Search outside this
boundary is known to fail and can be pruned.

How is pruning meta-level inference related to reducing efficiency-flexibility
constraints? A domain requiring a high level of architecture flexibility re-
sults in a large inference boundary - not much meta-level inference can be
pruned. On the other hand, domains that do not require fine-grained archi-
tecture configurability give a small inference boundary, allowing more search
pruning and increasing architecture performance. Hence, this pruning tech-
nique essentially trades off unnecessary architecture flexibility for inference
efficiency by examining the flexibility requirements of the domain.

1.3 Experimental Results Summary

The approach used in this thesis is to embed an agent into a learning archi-
tecture. The agent uses static an dynamic analyses to increase architecture
efficiency. This agent is called ISM (Internal Speedup-Mechanism Manager).
ISM is embedded into the Theo learning architecture. Theo is a very flexi-
ble architecture, and supports several speedup mechanisms. ISM's speedup
mechanism management component manages three of them: caching, EBG,
and Bounded-Cost EBG (BEBG), a variant of EBG. Experiments pitting
ISM against Theo have been run on two real-world, natural domains with
widely varying characteristics. In these experiments, ISM increases Theo ef-
ficiency by a factor of more than two on one domain, and a factor of twelve
on the other.

1.4 Thesis Organization

Chapter 2 presents an overview of Theo and describes the speedup mecha-
nisms supported by Theo that are relevant to this research.

In Chapter 3, a more precise description of the goals of this thesis is given,
and an overview of the approaches used in this thesis are presented. Chap-
ters 4 and 5 discuss in detail architecture-controlled speedup mechanism
management and architecture efficiency-flexibility constraint reduction, re-
spectively.

Chapter 6 discusses the overhead associated with automatic speedup
mechanism management, and presents approaches for reducing this over-
head.

Chapters 4, 5, and 6 each contain the results of very focussed experi-
ments, demonstrating the effectiveness' of each of the individual ideas and
techniques of this thesis. In Chapter 7, the overall results of this work are
presented.

Chapter 8 discusses related work. Chapter 9 summarizes the issues and
results of the thesis, and considers some areas for future research.

Chapter 2

Theo Overview

As mentioned in Chapter 1, the approach taken in this research is to em-
bed an agent into a learning architecture. This agent - called the Internal
Speedup-Mechanism Manager (ISM) - uses static and dynamic (run-time)
analyses to increase architecture efficiency. ISM uses the Theo learning ar-
chitecture [Mitchell 91] as a testbed. Consequently, all performance data
reported in this research has been determined using Theo. Although the
ideas behind ISM are relevant to learning architectures in general, it is use-
ful to have some familiarity with the details of Theo's operation to fully
understand ISM. Furthermore, it is important to comprehend the speedup
mechanisms managed by ISM: caching, EBG, and Bounded-Cost EBG. This
enables an understanding of ISM's management decisions with regard to
these mechanisms. In this chapter, the portions of Theo operation relevant
to ISM are described, as well as caching, EBG, and Bounded-Cost EBG.

2.1 Theo Representation

Theo uses a frame-based representation. That is, objects are represented by
frames, each of which can have properties or slots that describe the object.
For instance, consider the following frame boxl:

(boxl ...
(height 5)
(width *novalue*)
(length *inferred.novalue*)

)

In this frame, height, width, and length are all slots of the frame boxl.
Each slot may contain a value. In this knowledge-base fragment, the height
of boxl equals 5.

In Theo, there are two slot values that have special meanings: *novalue*
and *inferred.novalue*. If a slot value equals *novalue*, Theo does not
currently know the value of that slot and Theo has not attempted to infer
a value. If it contains *inferred.novalue*, Theo has attempted to infer the
value for the slot but has found it impossible to infer to value.

Uniform Representation

One way to view frame-based representations is to think of values of slots
of frames as corresponding to beliefs held about frames. For example, in
the above knowledge-base fragment the system "believes" that the height of
boxl equals 5. One of Theo's interesting features is its uniform represen-
tation. That is, in addition to holding beliefs about frames, Theo can hold
meta-beliefs (beliefs about those beliefs), meta-meta-beliefs, ad infinitum.
This means that slots can have subslots, subslots can have subsubslots, et
cetera. Essentially, Theo can hold beliefs about anything in the knowledge-
base.

To explain Theo's representation power more precisely, let us define re-
cursively an entity as a frame or a slot of an entity. Since Theo represents
beliefs as slots of entities, and Theo's uniform representation allows beliefs
about any entities, any entity can contain slots. That is, slots can be nested.
For instance, consider a knowledge-base fragment for the frame box2:

(box2 *novalue*
(height 3

(accuracy? high)

)
(width *novalue*)

)

As in the previous knowledge-base fragment, Theo knows information
about the height of the entity box2. Theo's representation, however, also
allows it to hold information about the entity box2 height. In this case, this
information concerns the accuracy of Theo's beliefs regarding the height of

box2. Although not included in the knowledge-base, box2 height accuracy?
could contain further slots, et cetera.

Another notation can be used to show the information contained in the
knowledge-base. Its general schema is: (< entity >< slot >) =< value >.
So, (box2 height) = 3 and (box2 height accuracy?) = high. The list (<
entity >< slot >) is known as an address, query instance, or problem
instance.

2.2 Theo Inference

Data can be stored and retrieved from the knowledge-base, making Theo
useful as a kind of information repository. However, Theo is most useful as
an inference engine. That is, in addition to simply looking up information in
the knowledge-base, Theo can try to calculate or infer query instance values
if they do not exist in the knowledge-base, based on Theo's operational
semantics and other data in the knowledge-base. In this section, Theo's
inference mechanisms are described.

2.2.1 Low-Level Inference

Suppose Theo must infer a value of the problem instance P (i.e., the solution
to the problem P). Theo assumes that the knowledge-base contains a Lisp
function F that can compute the value of P. Hence, to infer P, Theo locates
F and applies F to P, using the value returned by F as the value of P. That
is, F(P) =< value >.

At this level' of abstraction, Theo is not directly responsible for deter-
mining the value of P; F is. However, it is Theo's responsibility to locate
F. To explain how Theo does this, assume that P equals the address (si
s2 ... sM sN). Since all addresses consist of an entity and a slot, P's entity
equals (si s2 .. sM) and P's slot equals sN. Theo initially attempts to find
F at the address (si s2 ... sN toget). If F does not exist in that location,
Theo recursively cdrs down the address list, looking at (s2 ... sN toget),
(s3 ... sN toget), et cetera, terminating when JP is found or at (sN toget).
Because Theo searches for F using the toget subslot of P, F is known as
P's toget. If Theo cannot locate P's toget using the above strategy, Theo
applies a default toget to the problem. This default toget resides at the
(toget default .value) address of the knowledge-base.

As was previously mentioned, a problem instance consists of an entity
and a slot - P - (< entity >< slot >). The entity of P is known as

10

the context of the slot. Hence, this method of coring down an address
list searching for a value in the knowledge-base is called the drop-context
inference method, since this method decreases the context of the problem
instance. This is a way of searching for a value starting from a specific
location, and moving to increasingly general locations. I.e., the more context
the value of a slot has, the more specific its value is. If the slot value has
less context, it is applicable to a larger problem class.

The above discussion shows that the knowledge-base designer can pre-
cisely specify Theo's behavior by inserting toget functions into the knowledge-
base. Furthermore, the drop.context method of looking for a problem in-
stance's toget gives the designer a fair amount of flexibility and control over
how inferencing should be carried out. For instance if the designer wants a
particular toget function to be generally applicable to a particular slot, it
is stored in a location with little context. On the other hand, storing toget
functions at locations with more context allows the designer to differentiate
(to some degree) the inference behaviors of problem instances with identical
slots.

2.2.2 High-Level Inference

Although the ability to specify Theo's inference behavior via toget functions
gives the knowledge-base designer a high degree of flexibility and power, it is
very inconvenient - the designer must specify Theo's behavior via low-level
Lisp code. So, Theo provides a set of "built-in" inference mechanisms as
well as a language for specifying inference patterns at a more abstract level
than Lisp. In addition, Theo gives the knowledge-base designer a simple
way of controlling these "higher-level" inference schemes.

Inference Methods

Theo's built-in inference mechanisms are known as inference methods. Some
of the methods Theo supports are:

• Inheritance: use the generalization hierarchy to inherit the value of
an address. For example, if P = (boxl height methods) and box is a
generalization of boxl, inheritance would try to infer P by querying
(box height methods).

• Drop.context: described above. So, if P = (boxl height methods),
drop.context tries (height methods).

11

• Default.value: determine the value of P by inferring the value of (P de-
fault.value). I.e., if P = (box height), default.value tries (box height de-
fault.value).

In addition to using these methods, the knowledge-base designer has the
option of specifying inference patterns - essentially implementing new infer-
ence methods - using high-level Prolog-like rules. This gives the designer
much more power and flexibility than the methods described above, yet is
much easier than constructing low-level Lisp toget functions. Furthermore,
EBG and BEBG, which are described later in this chapter, perform better
with the more highly structured Prolog-like rules than with the arbitrary
Lisp toget functions.

How can a knowledge-base designer actually use Theo's inference meth-
ods? Inference methods are specified for problem instances or classes by
storing them in the methods subslot of the instance or class. The follow-
ing knowledge-base fragment specifies methods for the problem instance
(boxlheight) and for the problem class (boxheight).

(boxl ...
(generalizations (box))

(height 10

(methods (inherits drop.context default.value)))

)

(box ...
(height ...

(methods (inherits default.value)))
)

Note that the drop.context and inheritance inference methods work by
searching for values in progressively more "general" locations in the knowl-
edge base. This gives the domain designer the ability to configure the archi-
tecture's operation - the architecture is flexible. For instance, the designer
may wish to specify a single inference method for a large class of objects
(say, the area class in Figure 1.1). If he later wishes to modify the methods
for a small subclass (perhaps the triangle subclass in Figure 1.1) , he sim-
ply changes the methods of that subclass. The other elements of the class
continue using the originally specified methods.

12

Implementation

As described earlier, if Theo cannot find a special-purpose toget for problem
instance P, it uses a default toget. This toget essentially implements high-
level inference by attempting to find the methods subslot of P, which contains
a list of methods. Theo then proceeds by applying each method (in order)
on P, until a value is returned. This value is taken to be the value of the
problem instance.

Hence, a knowledge-base designer can specify which of Theo's predefined
methods to use, and the order they should be used in, for any problem
instance by specifying the methods of problem instances or problem classes.
If the knowledge-base designer does not specify a set of methods values,
Theo uses a default set.

2.2.3 Meta-Level Inference

One of the interesting features of Theo is that only Theo's low-level inference
is "hard-coded." Theo's high-level inference behavior is specified entirely
by data in the knowledge-base. For example, to enable the designer to use
Theo-defmed methods, a default toget function is stored in the address (toget
default.value). Similarly, Theo's inference methods and their behaviors are
actually defined in the knowledge base. Consequently Theo must continually
"consult" the knowledge base to determine how it should operate. This kind
of inference is called meta-level or system-level inference. It lowers Theo's
efficiency, but increases its extensibility and flexibility.

Theo's meta-level inference overhead is exacerbated by the fact that
many system-level slots can not be inferred directly - they require inferring
other system-level slots. For instance, inferring the methods of a problem
instance will almost always result in the query of a related slot: fixedmethods.

2.2.4 Prolog Rules

As discussed previously, one of Theo's methods is prolog. This method
specifies that Theo can use prolog rules to attempt to infer the value of
a query instance. For example, assume Theo must infer the daughters of
torn - i.e., the query instance is (torn daughters). Further assume that the
knowledge-base contains the following rule:

((daughters ?person ?d) :-

(children ?person ?d)

13

(generalizations ?d female))

In order to understand how Theo uses prolog rules, some vocabulary
must be defined. The above rule consists of three literals, one on each line.
Theo's prolog rules are simple antecedent-consequent rules. The literals that
follow the backwards-implication symbol :- are the antecedents; the literal
that preceeds the :- symbol is the consequent. The antecedent of a rule P
will be denoted A(P); the consequent will be denoted C(P). Each literal has
the following form: (< slot >< entity >< value >), and represents the
following information: (< entity >< slot >) =< value >. Either the entity
or value elements in any literal can be variables. Variables are preceeded by
a ? symbol.

A rule's antecedent must be satisfied before the rule's consequent can be
asserted. Hence, the goal of Theo's prolog rule interpreter is to determine a
consistent set of bindings for the variables in a rule's antecedent that satisfies
every literal in the antecedent. If this is possible, the rule's consequent can
be asserted. However, since Theo is backward chaining, prolog rules are
not applied until Theo is asked to infer a relevant query instance. A rule P
is relevant to a query instance Q if C(P) matches Q. Such a match exists
between Q and P if both the slot and entity of C(P) equal those of Q. This
may or may not require binding some variables. In the above example, a
match exists between the rule and (torn daughters) if fperson is bound to
the value torn.

Determining a set of consistent variable bindings for a rule's antecedent
involves subgoaling on each literal of the antecedent. For example, in the
above rule, the first antecedent literal is (children ?person ?d). During the
matching process between the rule and query-instance, the prolog interpreter
instantiated fperson as torn, so the first antecedent literal has become (chil-
dren torn ?d). To bind ?d, Theo constructs a recursive query instance (torn
children), and assigns ?d to the value of this new query instance. The next
literal in the rule's antecedent is (generalizations ?d female). Interpreting
the previous literal has generated a set of bindings for ?d. However, the set
of bindings must satisfy all the literals in the rule antecedent. This second
antecedent literal denotes that the elements of ?d must also be female. Thus,
Theo uses the second literal to filter out the initial instantiations of ?d that
are not female. Hence, ?d equals the set of female children of torn. Since ?d
equals the value of the rule consequent, the prolog interpreter returns the
value of ?d as the result of the query instance.

14

2.3 Speedup Mechanisms

The research discussed in this thesis deals with managing speedup mecha-
nisms. Because management strategies are specific to the characteristics of
each speedup algorithm, it is important to have some understanding of each
of the mechanisms that ISM manages. This section briefly describes each
such mechanism: caching, Explanation-Based Generalization (EBG), and a
variant of EBG caUed Bounded-Cost EBG (BEBG).

2.3.1 Caching

Caching is Theo's simplest and most used speedup mechanism. Caching the
value of a query instance consists of memorizing that value - storing it in
the knowledge-base. This is a very useful speedup mechanism if queries tend
to be repeated. In Theo, this is very often the case. Many of Theo's query
instances are system, or meta-level addresses, such as methods, fixedmeth-
ods, and toget addresses. Because values for these system-level addresses
are typically initially stored in very general locations (i.e., addresses with
little context) inferring them can require a large amount of search through
the knowledge-base resulting in many intermediate query instances. If these
values are cached in these intermediate locations, they can be immediately
accessed in future queries, reducing inference time.

If the value V of a query instance P is cached, Theo also stores an
explanation E of V in the expl subslot of P. The explanation describes how
V was derived. More precisely, E is a list of addresses whose values were
needed to infer P. For instance, consider the following:

(squarel ...
(area 9

(expl (((squarel area toget) (squarel area methods)
(square area)))))

)

This knowledge-base fragment shows that to infer the value for (squarel area),
Theo used the following addresses: (squarel area toget), (squarel area meth-
ods), and (square area). If the values of these addresses were also cached,
they would also have explanations. Hence, it is possible to build a directed
graph giving a derivation of the inference result. Such a graph is called an
explanation structure. One reason that explanations exist in Theo is that
explanation structures are needed by the EBG algorithm.

15

Explanations are also used for truth maintenance. In the above sample
explanation, the value of (squarel area) depends on the value of (square
area). If the latter value changes, the former value is no longer valid, and
should be erased, or uncached. Explanations provide a mechanism by which
this kind of knowledge consistency may be maintained.

To decide which problem instances should be cached, for every problem
instance P, Theo also infers (P whentocache). The value of this address
determines Theo's caching strategy for every address. By default, Theo
caches every problem instance.

2.3.2 Explanation-Based Generalization

Learning concepts from examples has been a primary research focus of ma-
chine learning. One such type of learning is concept induction - examining
many examples of a concept to determine a general description for that con-
cept. Explanation-based generalization, is another kind of algorithm. EBG
generalizes from only a single concept instance by determining the reasons
that the example is an instance of the concept to be learned. These reasons
are given by the instance's explanation, and gives a set of sufficient condi-
tions under which an example is an instance of the concept. Although this
explanation is specific to the instance, the EBG algorithm generalizes the
explanation, resulting in a more useful concept description. Unlike concept
induction techniques, EBG is deductive - its concept generalizations are
justified.

The input/output behavior of EBG is as follows. Given:

• Goal Concept: the concept definition describing the concept to be
learned.

• Training Example: an example of the goal concept.

• Domain Theory: a theory explaining why the training example is an
instance of the goal concept.

• Operationally Criterion: a predicate over concept definitions, speci-
fying the form in which the learned description must be expressed.

EBG determines:

• A generalization of the training example that is a sufficient definition
for the goal concept (and is hence more specific than the goal concept),
and that satisfies the operationally criterion.

16

The goal concept is a high-level concept description. When EBG is ap-
plied, it uses the goal concept and the domain theory to explain why the
training example is an instance of the concept to be learned. The opera-
tionally criterion determines the point at which the explanation terminates.
At this point, EBG has constructed an explanation structure for the train-
ing example. To generalize this structure, EBG simply regresses the goal
concept through the explanation structure.

From the description of this algorithm, it is clear that EBG is effective
when applied to problems with similar explanation structures. In effect,
EBG produces a "macro" which describes a high-level concept directly in
low-level terms, eliminating the intermediate-level computation that would
otherwise result.

In Theo, EBG generates prolog rules. Thus, the rule interpretation pro-
cess used for user and system-defined rules is identical to the rules generated
by EBG.

2.3.3 Bounded-Cost EBG

One of the problems with EBG is that it can generate rules whose form
causes the rule to be very costly to apply. For instance, consider the following
rule:

((child ?p ?c) :-
(parent ?c ?p))

Assume this rule were to be applied to the query instance (torn child). Con-
sequently, ?p is bound to torn. To instantiate ?c, Theo uses the antecedent
literal (parent ?c torn). This literal has a different form than those discussed
previously. Specifically, its value is bound and its entity is unbound. To bind
an entity whose slot S and value V are known, Theo must search through
all entities E in the knowledge-base that are elements in the domain of the
slot, and calculate the value of (E S). Those with values that equal V are
collected, and bound to the literal's entity variable. Hence, binding variables
in each literal of a rule's antecedent requires \Domain(slot)\ recursive Theo
queries, where \Domain(slot)\ equals the size of the domain of slot.

Contrast this situation with the following rule:

((A ?x ?v) :-
(B ?x ?i)
(C ?i ?v))

17

Here, as Theo attempts to bind the variables of each literal in the rule's
antecedent, only the value variables are unbound, rather than the entity
variables. Binding a value variable of a literal requires only one recursive
Theo inference.

The former type of rule is known as an unbounded-cost, or "expensive"
rule; the latter rule has bounded cost. The variables that cause a rule to
have unbounded cost are known as expensive variables. Note that there are
different levels of complexity: the above rule has only one expensive variable;
the following rule has two:

((A ?x ?v) :-
(B ?i ?x)
(C ?j ?i)
(D ?j ?v))

The number of expensive variables in a rule gives the rule's "degree of ex-
pensiveness."

In some situations, bounded-cost rules are preferable. The next section
discusses a variant of the EBG algorithm which generates only bounded cost
rules, called bounded-cost EBG or BEBG.

The BEBG Algorithm

BEBG is identical to EBG, but it adds a postprocessor. This postprocessor

• determines which variables cause the rule to have unbounded cost

• instantiates these variables to the values used in the training example.

Although variable instantiation transforms unbounded-cost rules into
bounded-cost rules, it drastically reduces the rule's generality. For example,
the rule

((child ?p ?c) :-
(parent ?c ?p))

becomes bounded-cost if we bind ?c to a value:

((child ?p kim) :-
(parent kim ?p))

18

On the other hand, this rule has become so specific that it may not be
useful. Hence, BEBG tends to produce rules that are more efficient, but less
general, than EBG.

Determining the variables of a rule that cause it to be unbounded-cost
can be problematic. For example, consider this rule:

((A ?x ?y) :-
(B ?i ?x)
(C ?j ?x)
(D ?i ?j)
(E ?j ?i))

In its current form, this rule is expensive. Its cost can be bounded, however,
by instantiating either ?i or ?j. How does BEBG decide? BEBG instantiates
variables using a "greedy" algorithm. That is, it constructs a list of all pos-
sible expensive variables, and instantiates the single variable that minimizes
the degree of expensiveness of the rule. This heuristic is repeated until the
rule has bounded cost.

19

Chapter 3

ISM Overview

This thesis examines some ways in which the efficiency of a learning archi-
tecture can be increased. A system called the Internal Speedup-Mechanism
Manager (ISM) has been implemented to study some classes of architec-
ture speedup techniques. ISM is built on top of Theo, and increases Theo
efficiency using both dynamic (at run-time) and static (pre-run-time) strate-
gies. This chapter discusses ISM's goals and presents an overview of ISM's
speedup techniques.

3.1 ISM Performance Goals

The goal of ISM is to increase Theo's efficiency. However, ISM's behavior
cannot be unconstrained. There must be limits to how ISM affects Theo's
operation. Furthermore, there are many metrics by which efficiency in-
creases can be judged. What, precisely, are ISM's goals, and how can ISM
be judged? This section reviews the system constraints and speedup goals
taken in this research.

3.1.1 ISM Constraints

In this thesis, ISM is constrained to preserve Theo's behavior. That is, from
the user's point of view, ISM cannot modify:

• Theo's inference capabilities - Speeding up the system should not de-
crease Theo's inference ability. Efficiency gains should not affect ar-
chitecture competence.

20

• Theo "correctness" - Increasing efficiency should not change Theo's
"input-output" behavior. That is, a system with ISM and a system
without ISM, if given the same knowledge bases and queries, should
return identical results.

From the knowledge-base designer's point of view, ISM should not change:

• Theo programmability - Theo should retain its flexibility and config-
urability. The ability of the user or knowledge-base designer to specify
Theo's inference behavior at a fine-grained level should be maintained.

Finally, ISM should not require additional:

• User-Theo or designer-Theo interaction - The techniques used by ISM
should not require any user or designer input, involvement, or exper-
tise. ISM should operate autonomously.

Essentially, ISM should modify Theo only to the extent that efficiency
is enhanced. That is, users and knowledge-base designers should not have
to be aware of ISM's presence.

Note that these constraints may not always be appropriate for all situa-
tions. For instance, if in a certain domain Theo is used merely to assist the
user in some real-time task, speed may be more important to the user than
inference competence. That is, the user may wish to trade some inference
ability to decrease response time. Similarly, under some situations a user
might be willing to give up correctness for speed. User's of the Calendar
Learning Apprentice domain, for example, might trade a 5% decrease in
correctness for a 50% increase in efficiency.

Nevertheless, to ensure ISM's applicability across a wide range of situa-
tions, ISM is constrained to preserve Theo's functionality.

3.1.2 ISM Speedup Goals

Assuming that ISM preserves Theo's behavior, the purpose of ISM is to
increase Theo's efficiency. Although there are different ways to judge ISM's
competence at this task, perhaps the most natural measure of ISM effec-
tiveness is: how much does ISM speed up Theo's inference over the lifetime
of the system? Given this measure, ISM's goal is to minimize architecture
execution time over the Me of the system.

Unfortunately, there are some problems with this goal. First, this goal
can result in inference cost patterns that might be inappropriate for some

21

tasks. For instance, consider an interactive task. In such a setting, users are
generally more concerned with individual query response times than with
overall system efficiency. If ISM's goal is to minimize execution time over
the life of the system, Theo might execute 90% of the user's queries in only
.1 seconds, and 10% of the queries in 1.1 seconds, resulting in an average of
.2 seconds/query. Users might prefer that all queries be inferred within .25
seconds, even though total system efficiency would decrease.

Another problem with this goal is that it is not specific with respect to
exactly what speedup strategies ISM should use. It is difficult to implement
a system that minimizes overall execution time because such a system must
consider an immense number of possible strategies that could speed up the
system, and it is most likely impossible to determine the optimal strategy.

If maximizing overall system efficiency is unsuitable as a goal, what is
an appropriate alternative? For this research, ISM's primary goal is defined
from a practical perspective. ISM's purpose is to be useful for all users, in
all situations. That is, ISM is successful if there is never an instance where
a user prefers to use Theo without ISM. How can ISM meet this goal? By
ensuring that ISM increases Theo's efficiency for every query instance. Note
that this goal does not attempt to ensure optimality. Rather, it ensures that
ISM will never decrease system efficiency. If ISM is successful according to
this criterion, ISM will benefit all users with all kinds of usage patterns - its
speedup strategies will be universally useful. Hence, this per query speedup
goal does not suffer from the problems of the system lifetime speedup goal.

Note that this goal is an ideal; it is impossible for any management
strategy to guarantee performance increase in all situations, because one can
construct situations for which Theo's default operation is already optimal.
Hence, although ISM strives for the ideal, it cannot make any performance
guarantees.

3.2 ISM Goal Consequences

ISM's goal has some interesting ramifications with regard to its necessary
characteristics and its power. These issues are discussed in this section.

3.2.1 Adaptivity

Consider the following scenario: Theo begins operation on a domain with
stable characteristics, for which Theo's default operation is not well-suited.
ISM finds and implements a speedup strategy that is superior. Suddenly, the

22

characteristics change. Now, Theo's default operation is superior to ISM's
strategy. For ISM to fulfill its performance goal, it must find a new strategy.

This scenario demonstrates that ISM must be adaptive. No single speedup
strategy can be superior to Theo's default operation in all situations. To
guarantee its speedup goals, ISM's strategies must reflect changes in the
architecture environment. Examples of changes include query distribution
shifts and shifts in the stability of knowledge base data. Adaptivity is an
important second-order goal, implied by ISM's primary performance goal.

Adaptivity implies another performance goal: ISM must outperform any
fixed speedup mechanism management strategy over a range of domains
with varying characteristics. An example of a fixed speedup mechanism
management strategy is Theo's default strategy of handling caching and
EBG: cache at every opportunity, and never invoke EBG or BEBG. This
strategy may be in fact optimal for some domains. However, the adaptivity
goal is meant to ensure that ISM is, in general, superior to any single speedup
strategy.

3.2.2 Goal-Induced ISM Limitations

ISM's per-query speedup goal tends to limit ISM's scope and power. Ensur-
ing that architecture performance will never decrease is a strong constraint,
and results in the following limitations:

• No run-time experimentation. ISM simply does not have time to ex-
periment to determine the most effect speedup mechanism manage-
ment schemes. This may result in less than optimal decisions when
sensor data is incomplete. Furthermore, this constraint can lead to
"quick and dirty" management decisions, since a more careful analysis
of the architecture's operation may be prohibitively expensive.

• Very conservative behavior. ISM cannot be very speculative - it must
be fairly certain of the speedup potential of a particular management
decision before that decision is adopted. This risk-averse behavior
means ISM tends to make speedup gains incrementally. Dramatic
speedup gains can be relatively rare.

• No learning techniques employed. ISM's opportunities to learn how
to properly manage speedup mechanisms are limited due to the over-
head of learning. ISM simply cannot afford the time needed to, say,
learn how to classify the query instances that should be cached. It

23

is important to note although ISM could learn off-line, this strategy
could have problems due to changes to the architecture environment
occurring at run-time. This kind of situation requires on-line learning.

• Possibly skewed management priorities. ISM must ensure that under
no situations does its operation slow Theo down. Thus, ISM may have
to trade off potential speedup in one situation to make sure there is
no slowdown in another. This is a problem if the speedup potential is
much larger than the slowdown potential, or if the speedup situation is
much more common than the slowdown situation. One way in which
this tradeoff can occur is through sensing. The sensors needed to detect
the potential speedup situation may be too expensive in some other
situations. If this is the case, even if the potential speedup is large,
ISM cannot use these sensors, and hence the speedup opportunity is
lost.

ISM's goal of preserving Theo's behavior is also limiting. Many of these
limitations are obvious, but some of the more interesting issues to consider
are:

• Correctness behavior. It is possible that ISM could speed Theo up
dramatically at only a small accuracy cost. For instance, deleting some
infrequently used methods could have such an effect. Unfortunately,
ISM is not given the opportunity for this kind of optimization.

• Theo specification. Theo is implemented in such a way that its oper-
ation can be configured via the knowledge base at a very fine-grained
level. The cost of this flexibility is inference overhead; however, much
of this flexibility is never used. Configurability could be sacrificed for
efficiency. However, this kind of optimization is not allowed.

3.3 ISM Approach

How does ISM increase Theo's efficiency? ISM utilities two strategies: a
"dynamic" strategy that relies on run-time analyses of Theo's operation to
improve system performance, and a "static" strategy that uses a pre-run-
time knowledge-base analysis to tune Theo's inference. These strategies are
introduced in this section.

24

3.3.1 Dynamic Strategy

ISM's dynamic component uses speedup mechanism management to increase
Theo's performance. That is, while Theo is operating, ISM considers (for
each query instance) whether caching, EBG, or BEBG can increase Theo's
efficiency, and invokes these mechanisms appropriately. Because Theo's in-
ference is highly recursive, each top-level inference can result in hundreds of
query instances. Hence, ISM faces quite a task.

To give ISM the ability to analyze Theo's operation and manage Theo's
speedup mechanisms at run-time, ISM is designed as an agent embedded
into the Theo architecture. As such, ISM is comprised of sensors, decision
criteria, and effectors. The sensors monitor Theo's operation, collecting the
data needed to make appropriate speedup mechanism management deci-
sions. The effectors actually apply the various speedup mechanisms. The
decision criteria map sensing information to appropriate speedup mechanism
management decisions.

ISM's decisions are based on a utility analysis. During the run-time
analysis of a query instance, ISM calculates the utility of every speedup
mechanism on the instance. This gives the expected time savings resulting
from the application of the speedup mechanism. Using this data, ISM de-
termines which mechanisms to apply to a particular query instance. The
details of ISM's utility analysis, and ISM's strategy for determining which
speedup mechanisms to apply given this information, are discussed in the
"ISM Run-Time Optimizations" chapter of this thesis.

One of the main problems faced by an architecture such as ISM is ef-
ficiency. Monitoring Theo's operation and calculating speedup mechanism
utilities can be very expensive. If ISM must make speedup mechanism man-
agement decisions for every query instance, this ISM overhead cost can be
prohibitive. In fact, for good performance, it is necessary to implement
strategies to reduce ISM overhead. ISM incorporates two such strategies,
which are described in the "Managing ISM Overhead" chapter.

Effects of ISM Goals on Speedup Mechanism Management

Recall that ISM's primary goal is to out-perform Theo on a per-query basis.
Because Theo never applies EBG or BEBG, ISM can be very conservative
in utilizing these mechanisms. This observation has important ramifications
for reducing ISM overhead. Essentially, ISM need not be very complete in
analyzing when EBG and BEBG are useful - it does not need to consider the

25

effects of EBG and BEBG on every query instance. This issue is discussed
in Chapter 6.

3.3.2 Static Strategy

In compiler design, a static code analysis can reveal various types of op-
timizations. ISM's static speedup strategy is based on the same general
idea.

Inference in Theo consists of a search through the knowledge base to
find information that is needed to determine the value of the query instance.
Often, this search is inefficient. Unsuccessful paths are explored. Because
Theo's operation is specified by values in the knowledge base, in some cases
it is possible to roughly determine Theo's search paths for classes of query
instances from a static analysis of Theo's knowledge base. Furthermore, by
examining the initial state of the knowledge base, it is possible to determine
which search paths cannot be successful. ISM performs such an analysis,
and at run-time, uses this information to prune Theo's inferencing.

This technique is discussed in the Chapter 5.

3.4 General Issues

The main thrust of this thesis is the investigation of speedup mechanism
management techniques to increase architecture efficiency. Thus, the main
purpose of this thesis is to describe one such successful system - essentially,
to relate the sensors, effectors, and decision criteria of ISM. In addition
to confronting the actual management issues, however, this research also
attempts to address some broader, more general concerns. These include:

• Which speedup mechanisms are most useful when managed by an ISM-
like mechanism?

• What are the characteristics of these speedup mechanisms?

• Under what kinds of domains is an ISM-like system most effective?

• What features in the learning architecture are needed to support ISM?

Obviously, there are ways of increasing architecture efficiency that are
independent of speedup mechanisms. Since the wider goal of this work is to
speed up architectures - Theo in particular - a part of this research addresses

26

a way to speed up inference that does not involve speedup mechanisms:
ISM's static analysis technique. This portion of the thesis gives one method
by which Theo inference can be optimized with no modifications to Theo
behavior. Some of the wider issues involved with this technique include:

• What are the characteristics of a system's inference mechanism that
would make this kind of optimization useful?

• What are the advantages of this kind of "inefficient" behavior?

• What features in the learning architecture are needed for this kind of
optimization to be effective?

• Under what situations is this optimization useful?

3.5 Summary

In this chapter, ISM's goals were defined, and the effects of these goals
on ISM's operation were considered. ISM's two speedup approaches were
introduced, and some of the broader issues that this thesis addresses were
overviewed.

27

Chapter 4

Managing Speedup
Mechanisms

This chapter discusses the details of ISM's run-time optimization strategy,
which manages the following three speedup mechanisms: caching, EBG, and
Bounded-Cost EBG (BEBG). The aspects of these learning algorithms that
are relevant to this research have been described in Chapter 2.

ISM's speedup mechanism management strategy relies on estimating the
expected speedup, or utility, gained from applying each mechanism for each
situation faced by the architecture. ISM bases its actions on these utility
measures. The first section in this chapter is devoted to describing how ISM
estimates speedup mechanism utility. The rest of the chapter explains the
management choices available to ISM, the decision criteria on which ISM
bases its management choices and actions, and the relation between these
actions and ISM's utility estimates.

4.1 Speedup Mechanism Utility

This section describes and analyzes ISM's utility estimates for each speedup
mechanism. To show how these estimates have been derived, a formulation
of each mechanism's "ideal" utility is first presented, assuming perfect in-
formation about both past and future events. Since ISM unfortunately does
not have access to perfect information - either due to sensor limitations or
to a lack of knowledge about future events - ISM must estimate unavailable
information. These estimates degrade the ideal utility formulations to util-
ity approximations. ISM's approximations are discussed and justified. The

28

sensors needed to determine the information relevant to the utility approxi-
mations are then presented, followed by a description of the effectors needed
by ISM to control each speedup mechanism.

Since the focus of this thesis is architecture speedup, the relevant measure
of utility in this research is time - the amount of time a speedup mechanism,
if invoked, saves Theo. Any speedup mechanism management decision can
effect performance over the lifetime of the system. Hence, the most natural
timeframe over which speedup mechanism utilities could be measured is
system lifetime. However, it is more convenient to calculate utilities over
smaller, finite periods of time. In the analyses presented in this chapter, the
speedup mechanism utilities of a query instance Q are computed between
successive queries to Q. That is, the utility calculation time-frame is taken
to start when Theo begins to infer Q, and end with the first subsequent time
Q is requeried.

Sensing Tradeoffs

Because ISM cannot sense future events, it relies on monitoring the past to
predict the future. For instance, ISM assumes that it can use query distri-
bution histories to estimate future distributions. One problem in designing
sensors of this sort is determining the history "window" of the sensor - the
amount of past information kept by the sensor. There is a tradeoff associ-
ated with sensor window-size: accuracy verses reactivity. Typically, larger
window sizes result in potentially more accurate sensors, due to the larger
amount of information available. On the other hand, large sensor windows
mean the sensor is typically poor at detecting any dynamics in the infor-
mation being monitored (such as query distributions), since these dynamics
may be initially misinterpreted as noise.

Many of ISM's sensors require making tradeoffs of this kind. The most
important issues in determining a reasonable tradeoff point are

• accuracy verses reactivity

• sensor efficiency

One of the important issues in designing an ISM-like mechanism is de-
ciding how to make these tradeoffs. ISM has different tradeoff points for
different sensors. The reasons why ISM chooses a particular sensing design
with respect to these criteria are important to keep in mind as the sensors
are described.

29

4.1.1 Caching

Ideal Utility

Consider the ideal utility of caching. Caching the result of a query instance
Q is useful when:

• Q is subsequently requeried, and

• the values in the knowledge base that Q depends on (i.e., <3's contrib-
utors) do not change until Q is requeried at least once.

In this situation, the benefits of caching a query instance equals the inference
time of the instance's subsequent requery.

On the other hand, caching Q always incurs the following costs:

• time spent creating or modifying the dependents slots for each of Q's
contributors to include Q

• time spent inserting the value and explanation of Q into the knowledge
base

• space needed to store the value, explanation, and dependents of Q

Furthermore, when the value of the query instance Q is cached, and <3's
contributors change, Theo's truth-maintenance system causes the following
elements in the knowledge base to be modified or deleted:

• <Q's value

• <3's explanation

• the dependents slots of <Q's contributors

To analyze the ideal utility of caching more formally, let us define the
following quantities:

Ucache(Ä) = the marginal utility of caching query instance A.
71(A) = the inference result of query instance A.
£(A) = the immediate explanation for A - i.e., the expl slot of A.
V(A) = the immediate dependents of A.
C(l) = the length of list I.
r(n) = the inference time of the nth future query instance.
r](A) = an integer n representing the nth future query

30

instance such that that query instance equals A and
it is the first such instance.

_ J 1 if the contributors of A are stable for the next n queries
^ ' ' ~~ 1 0 otherwise

-1/4 ^ _ J ^ ^ t^ie contributors of A are stable for the next n queries
^ ' ' ~ 1 1 otherwise

Kput = time required for Theo to store 1 value in the KB
Kcons = seconds/cons-cell: how much space "costs" in terms of time

Note that some of these quantities are unknown. Calculating the precise
utility of a speedup mechanism, for example, requires knowledge of future
events. However, these quantities allow us to define precisely the utility of
caching. Then we will consider how ISM approximates its utility calculations
by estimating some of these unknown quantities.

Ideal Utility Calculations

The overall utility of caching query instance A equals the benefits of caching
A minus the space and time costs of caching. That is,

CWe(A) = Benefitcacke(A) - KconsCWS(A) " ^ÄU) (4.1)

The amount of time caching saves equals the time it takes to infer the
problem instance when it is requeried. However, this is true only when the
query instance's contributors are stable. Hence,

Benefitcache{A) = a(A, n(A)) X T(TJ(A)) (4.2)

Now, consider the time costs of caching. There is an initial time cost as well
as a TMS time cost associated with caching. The initial time cost results
from the time it takes to store data in the knowledge base. This data consists
of the value of the query instance, the query instance's expl slot, and the
dependents slot of each element of the query instance's explanation.

Cost^UA) = CostJZUA) + Cos4Zes(A) (4.3)

Cost%%al(A) = Kputx(JC[£(A)) + 2) (4.4)

TMS time cost only manifests if the contributors of the query instance are
unstable, since only in this situation must values in the KB be deleted. There

31

are two cases to consider. When the query instance is a top-level query,
an unstable contributor results in the deletion of the value of the query
instance, the expl slot of the query instance, and the removal of the query
instance from the dependents slot of each member of the explanation of the
query instance. If the query instance is not a top-level query, the marginal
additional work done by the TMS due to caching the query instance amounts
to only the deletions of the value, explanation, and dependents of the query
instance.

r™*K™ (A_\ ° \A, 77(A)) x Kput x (£[£(A)] + 1) if A is top-level
^ostTMS{A) - | a_l{^^A)) x zK^ otherwise

(4.5)
Finally, the space cost of caching the query instance equals the total amount
of KB space needed by the caching mechanism multiplied by the amount of
time that this space is being used. This space cost is "translated" into a
time cost via Kcons.

CostZTe(A) = v(A) x (C[U(A)] + C[S(A)] + C[V{A)}) (4.6)

Caching Utility Unknowns

In the above analysis, the following quantities are unknown:

• *(A, 77(A))

• r(V(A))

• -"■ cons

The first two items involve future events. The last item can be calculated, in
principle. To do so, one could initiate two identical Theo runs with identical
starting states, with one exception: add to one of the starting states a fixed
data structure of known size. Theoretically, the space taken up by this
structure should slow one of the runs down, due to effects such as garbage-
collection and disk swapping. Kcons can be estimated as:

TimeDiscrepancy
DataStructureSize x NumberOflnferences

In practice, this number very small small - virtually 0.

(4.7)

32

Estimating Caching Utility-

IS M must estimate the values of these unknowns to use the utility calcula-
tions given above. ISM's estimates are:

a(A,rj(A)) « Probstable(A) (4.8)

T(TJ(A)) « Costinf{A) (4.9)

Kcons « 0 (4.10)

Calculating a(A,n(A)) requires knowledge of future events, which ISM
does not have. ISM estimates this boolean quantity by the probability that
A will remain stable before it is requeried: Probstable(A). Also, rather than
tracking the stability of the query instance's contributors directly, ISM does
so indirectly by tracking the value of the query instance itself - a much
cheaper alternative. That is, ISM keeps a history of past answers for the
query instance. This history reveals when the query instance's value has
been stable and unstable, and can be used to calculate the probability of
stability of the query instance. Note that the stability of the problem in-
stance value is not equivalent to the stability of the values of the problem
instance's contributors. For instance, assume Theo needs to infer (box area),
and does so by multiplying (box height) by (box width). If (box height) =
(box width) = 2, then (box area) = 4. Suppose that the value of (box height)
is changed to 4, and (box width) to 1. (box area) still equals 4. Because the
contributors of (box area) have changed, (box area) is unstable. However,
the value history of (box area) has remained stable. In this case, if ISM
used the value history of the problem instance to conclude that the values
of the instance's contributors were stable, ISM would be incorrect. This is
known as the sensor aliasing problem, and will be discussed further in the
Experimental Results chapter.

To estimate T(TJ(A)), ISM assumes that the time needed to infer a query
instance in the future equals the time needed to infer the query instance at
present, Cost{nf(A). Note that Costinf(A) represents true inference time
- time required if A were not cached. Given ISM's lack of knowledge con-
cerning future events, this is a plausible estimate, and very efficient. This
approximation tends to be very poor during Theo's first few queries, since
Theo tends to speed up dramatically during this time (mainly due to speedup
from caching system slots). This estimate becomes much more accurate after
an initial "warm-up" period, however.

The third approximation shows that ISM essentially disregards space
costs in its utility calculations. Space costs are minor enough to be ignored

33

when making caching decisions. However, ISM does indirectly minimize
space costs by considering speedup mechanism application on only a subset
of Theo's query instances. Essentially, speedup mechanisms are only useful
for query instances that satisfy a set of usefulness criteria. ISM's sensors
make initial assumptions that can cause ISM to apply speedup mechanisms
to query instances that do not satisfy these criteria. By using these crite-
ria to filter the query instances that ISM considers, the space used by the
speedup mechanisms is significantly decreased. Hence, ISM does not explic-
itly consider space costs in its utility calculations, but does so implicitly via
the usefulness criteria. This will be explained in detail in Chapter 6.

ISM's estimates lead to the following expression for caching utility:
If A is a top-level query instance:

Ucache(A) = Probstable(A)Costinf(A)

-(Kput(£[£(A)] + 2) + Kput(C[£(A)] + 1) (4.11)

If A is not a top-level query instance:

Ucache(A) = Probstabie(A)Costinj(A)

-(Kput(£[£(A)] + 2) + 3Probunstabie(A)Kput (4.12)

Caching, Not Caching, and Uncaching

ISM uses its caching utility estimates to decide whether or not to cache
a currently uncached query instance. If Ucache(A) > 0, caching results in
speedup, and the value of A is cached. If Ucache(A) < 0, caching results in
slowdown, and the value of A is not cached.

However, assume that ISM had previously decided to cache a query in-
stance. How can ISM subsequently decide that the query instance should be
uncached? Since the costs of caching do not equal the costs of uncaching,
the utilities of caching and uncaching should be different. ISM is imple-
mented in such a way that it makes management decisions only for query
instances that do not have cached values - independent of the instances'
caching strategy. Because ISM is applied only under this situation, ISM
handles uncaching the same way it handles caching: if Ucache(A) < 0, A is
uncached. That is, Ucache(A) = -Uuncache(A).

ISM determines its caching strategy for a query instance at the con-
clusion of that instance's inference. This allows ISM to use the sensing
information gained during the inference itself.

34

Caching Utility Sensors

The above utility analysis/approximation reveals that the following infor-
mation is used by ISM to estimate caching utility:

• Probsta.bie(A): probability that the value of query instance A does not
change before A is requeried

• Costinf(A): time needed to infer A

• KpUt

• C[£(A)]

Probstabie(A) is monitored by keeping a history of the results of A, from
which the probability of stability is calculated. This kind of sensor must
balance accuracy and reactivity, a tradeoff that has been discussed previ-
ously. ISM implements this sensor by storing N most recent answers to
A in the knowledge base as a subslot of A, and uses this information to
calculate Probstable{A) on demand. Since leverage from managing caching
and uncaching derives from the manager's abibty to respond to environmen-
tal dynamics quickly (by applying the appropriate alternative), this data is
monitored using a relatively short-term sensor, with N = 5. A short-term
sensor is also more efficient in this case, since less data needs to be stored,
and calculating Probstabie{A) is linear in N. For a novel query instance, this
sensor has no stored data from which probabilities can be calculated. In
this situation, Probstable(A) is taken to equal 1.

Costinf(A) is implemented by directly timing Theo's operation as it
attempts to infer A. This resulting time - and only the most recent time - is
stored in the knowledge base. I.e., this is a very short-term sensor. However,
this allows ISM to immediately observe any environmental dynamics causing
changes in inference times, or speedup effects resulting from a management
action. Also, a short-term sensor operates more efficiently.

Kput is measured prior to run time. To determine this value, a function
that inserts a value into the knowledge base is simply applied and timed.

C[£(A)] is monitored directly. When Theo returns the value of a query
instance, its explanation is also returned. This allows ISM to calculate the
number of elements in the explanation.

35

4.1.2 EBG

Factors Influencing EBG Utility

It is useful to consider the similarities and differences between caching and
EBG. Obviously, both can reduce inference time. The ways in which Theo
uses the results of these speedup mechanisms are quite different, however.
Caching results in a memorized fact. EBG, on the other hand, essentially re-
sults in an "inference shortcut" which Theo applies to find answers to query
instances. As a consequence, from the architectural viewpoint, EBG is a sim-
pler speedup mechanism than caching. Caching needs a truth-maintenance
system to maintain the correctness of the knowledge base. EBG does not
require such architectural support.

Because EBG learns an inference method rather than a simple fact, its re-
sults tends to be much more generally applicable than the results of caching.
EBG learns rules that tend to be applicable to sets of query instances, rather
than to a single instance. Furthermore, these rules do not require the stabil-
ity of query instance contributors for usefulness - although they do need the
knowledge base domain theory to be stable, which is virtually always true.
Unfortunately, EBG has a higher overhead than caching. EBG overhead
comes from the following factors. Note that EBG is considered in isolation.
The effects of other speedup mechanisms such as caching are factored out.

• Rule generation. Applying the EBG algorithm can be expensive.

• Rule application. As discussed in Chapter 2, learned rules may be
expensive - meaning the time it takes to apply a rule is at least linear
in the number of objects in the knowledge base. Even if a learned rule
is not expensive, rules take time to apply, since every clause in the rule
results in a Theo query instance.

Essentially, there is a generality-cost tradeoff between caching and EBG.
Caching has very little overhead, but is useful in only a small number of
situations. EBG is generally more useful, but using learned rules is less
efficient than using cached knowledge.

Ideal Utility

In addition to the quantities defined for caching, to determine the ideal
utility of EBG, let us define:

36

a(R,A)

\domain(R, v)\ = the number of unique instantiations of expensive variable
v in rule R (i.e., the size of the domain associated with v).

UEBG(A) = the utility of applying EBG to query instance A.
Ebg(A) = the rule resulting from applying EBG to A.
„ „ , _ ., I 1 if rule R is successfully applied to query instance A
RSucc(R,A) =|0 otherw.se

£*(A) = the complete explanation of query instance A.
Q(i) = the ith future query instance.
Ants(R) = the antecedents of rule R.
ExpVars(R) = the expensive variables of rule R.

1 if R is applicable to A, i.e., if slot(A) = car(head(R))
0 otherwise

., . . 1 if iE is applied to A
^ ' ' '0 otherwise

KEBG — seconds/length-of-explanation: query instance explanation
length to time cost of applying EBG to query instance

The utility of applying EBG to query instance A equals the difference
between benefits of EBG and the costs of EBG. Note that these costs and
benefits are measured over the same period as those of caching.

UEBG(A) = BenefitEBG(A) - CostEBG(A) (4.13)

The amount of time saved by a rule learned using EBG depends on the
number of query instances on which the rule can successfully be applied
during the given period, and the time Theo would have taken to infer each
of these without using speedup mechanisms.

r>{A)

BenefitEBG(A) = J2 [RSucc(Ebg(A), Q(i)) X r(»)] (4.14)

There are several costs associated with EBG: space cost, the initial time cost
needed to execute the EBG algorithm, and the marginal time cost needed
to apply rules learned using EBG.

CostEBG(A) = Cost%£al(A) + CostZ^UA) + Cost«""* (A) (4.15)

The space cost of EBG is proportional to the amount of KB space needed
to store the learned rule multiplied by the amount of time that this space is

37

being used. As is the case with caching, this space cost is "translated" into
a time cost via Kcons.

CostsPace(A) = Kcons x C{Ebg{A)) x V(A) (4.16)

The EBG algorithm constructs the explanation structure of the query in-
stance and then regresses the goal concept through this structure. Hence,
its execution time is linear in the size of the explanation structure. EBG's
initial cost consists of this execution cost plus cost of inserting the rule into
the KB.

CostlZU(A) = Kput + KEBG x C(£*(A)) (4.17)

EBG's per-query (or marginal) cost for some period of time depends on the
number of times (during the period) that the rule is applied multiplied by
the time it takes for each application.

v(A)

Cost«™inal(A) = £ WEbg(A)Mty&(Ebg(A)MV)Cost«$y_r^e(Ebg(A)Mi))]

(4.18)
The time it takes to apply a rule to a query instance depends on many com-
plicated factors. One such factor is the antecedents of the rule. Application
time increases with the number of antecedents in the rule. If the rule has no
expensive variables, this relation is simple; in the other case, however, ap-
plication time depends on the number of expensive variables, the size of the
domain of each variable, the ordering of the antecedents, and other quan-
tities. These factors are complicated enough, and interact enough, that it
is impossible to determine the exact function representing the application
time of a learned rule. Therefore, for the purposes of this utility analysis,
this cost is represented by an unknown function:

Cost^fy_rule(R,A) = F(A,Ants(R),ExpVars(R),\domains(R,ExpVars(R))\,...)
(4.19)

EBG Utility Unknowns

The EBG ideal utility calculations involve the following unknown quantities:

• C(Ebg(A))

. ?{...)

38

• E?ii} [RSucc(EBG(A), Q(i)) x r(i)]

• Eti]^Eb9(A),Q(i))

• d(£&5(A), Q(i)), for 1 < i < 77(A)

The value first of the quantity is assumed to have a negligible cost, since
it is multiplied by Kcons in the analysis, and Kcons is taken to equal 0 as in
the caching analysis. The second item is unknown due to the complexity of
the function this item represents. The rest of the items require knowledge
concerning future events: how successful the rule will be, the time cost of
future query instances, and the cases for which the learned rule will be
applied.

EBG Utility Estimates

ISM estimates the unknown EBG utility quantities as follows:

a(Ebg(A), Q(i)) « 1,1 < i < 77(A) (4.20)

ISM assumes that if a rule is applicable to a query instance, it will be
applied. This is true when:

• the value of the query instance consists of a set of items (instead of a
single item), or

• there are no other rules applicable to the query instance. This is
true when all the learned rules apply to distinct slot values. Hence,
this approximation tends to be reasonable when the learned rules are
general enough (relative to the query distribution) that multiple rules
are not needed for a single slot.

t«^™JZ%%7 (4-21)

This formula states that the number of times that a rule is applicable
over query instance A's utility calculation timeframe is approximately equal
to I "erlesU)l Since a rule is applicable whenever its slot equals the slot
of a query instance, this approximation is quite accurate.

39

r>(A)

£ [RSucc(EBG(A),Q(i)) x r(i)] « C^.B/(A)I^^^^^^^^)^

(4.22)
From this equation, we see that the benefit derived from the rule EBG(A)

is approximated by query instance A's inference time multiplied by a mea-
sure of the number of times EBG(A) will be successful before A is requeried
- before the utility calculation timeframe expires. This measure is taken to
i \ExplanationStructureMatches(A)\ mi . f ,i. , . ,1 -i be J— j ■ , iV ^—a. I he numerator of this term is the number
of times A's explanation structure has matched the explanation structure
of any query instance. Hence, this term gives the average number of times
EBG(A) is useful for every query instance A.

Unfortunately, true explanation structures cannot always be generated.
Some of Theo's inference mechanisms cannot be represented by a domain
theory. If a knowledge base designer implements a novel method or special-
purpose toget, ISM cannot represent these inference mechanisms in an ex-
planation structure - no domain theory represents these mechanisms. To
handle this problem, explanation structures are augmented so that their
nodes can include methods and togets in addition to domain theory rules.
Augmented explanation structures are called inference structures. The in-
ference structure of a query instance A is InfStruct(A). ISM uses inference
structures to approximate explanation structures. Hence,

£ [RSucc(EBG(A), Q(i)) x r(i)] * Cost^M^^^lf^
~{ \queries(A)\

(4.23)

F(...) « Kappiy-ruie x Costinf(A) (4.24)

ISM assumes that the application cost of EBG(A) is proportional to the
time needed to infer A. This approximation is very rough. Essentially, ISM
assumes that the time difference between applying a learned rule and actu-
ally inferring the query instance derives from meta-level slot inference. ISM
further assumes that meta-level slot inference takes a fixed proportion of
time for the inference. Although rough, this approximation is very inexpen-
sive to calculate, which, given the complexity of F, is very important. If not
quantitatively accurate, this estimate is at least qualitatively reasonable.

40

Rule Generation and Rule Elimination

From the above analysis, ISM takes EBG utility to equal:

UEBG(A) = Cost™l[A) [\InfStructMatches(A) \
\quertes(A)\
-Kappiy-ruie\queries(slot(A))\] (4.25)

Thus, EBG utility is positive if

\InfStructMatches(A)\ > Kappiy-ruie\queries(slot(A))\ (4.26)

ISM uses this formula to determine when EBG should be used to generate
rules. Note that the overhead of creating the rule is not included in this
formula. Because ISM cannot know how often a rule will be used during
the life-time of the system, it considers only marginal costs in this utility
calculation. However, to ensure that a rule has a reasonable likelihood of
being useful, a threshold criterion must be satisfied before EBG can be
applied to query instance A:

\Inf StructMatches{A)\ > 4 (4.27)

Because the EBG utility formula considers only the marginal costs of
EBG, is can also be used to eliminate existing rules. I.e.,

UEBG(A) = -UunEBG(A) (4.28)

If, after a rule is generated, ISM finds the utility of the rule to be negative
- i.e., the overhead of applying the rule outweighs the speedup gained from
the rule - ISM can prevent Theo from using it. Hence, ISM uses utility
estimates to invoke and revoke speedup mechanisms.

As for caching, ISM calculates EBG utilities for a query instance at the
conclusion of the instance's inference. This allows ISM to use the sensing
data gathered during in inference. Because of this, even at startup, ISM has
data from which to calculate utilities.

EBG Sensors

The following data is used by ISM for its EBG utility calculations:

41

• Costinf(A): this sensor is also used for determining the utility of
caching, as has been discussed previously.

• \InfStructMatches(A)\: ISM generates inference structures on de-
mand for a query instance by constructing a tree of prolog rules, meth-
ods, or togets used to infer the instance. The nodes in the tree are
determined by following the expl pointers for the instance. One the
tree is constructed, it is compared with other existing trees to find
matches.

• \queries(A)\: ISM keeps a counter for each query instance representing
the number of times that it has been queried. This data is stored in a
subslot of the instance.

• \queries(slot(A))\: ISM also keeps a counter for each slot S repre-
senting the number of times instances whose slot equals S have been
queried. This data is stored in a subslot of S.

The last three sensors are all very long-term; they keep running counts
of information over the life of the system. Because of EBG's large initial-
cost overhead, it is important to try to guarantee EBG's usefulness if it is
invoked in order to amortize this overhead (since it is ignored in ISM's utility
estimate). Since this is impossible, keeping a large history of information
relevant to EBG's utility calculation gives ISM the best chance of predicting
EBG utility correctly. Also, monitoring running totals is more efficient than
monitoring over smaller time periods - maintaining a history of the quantity
being measured is not needed.

EBG Effectors

ISM invokes EBG on a query instance by setting the value ofthat instance's
whentoEBG slot. At the conclusion of the inference, Theo checks the value
of this slot. If it has been set, EBG is used to generate a rule.

ISM eliminates a learned rule by reindexing it. After reindexing, Theo's
inference methods cannot find the rule and it cannot be applied. Rule
reindexing has two advantages:

• If it later appears to ISM that the rule is useful, ISM does not have to
regenerate the rule - it can be moved to its original location.

• The rule can be used by BEBG as a template to generate bounded-cost
rules.

42

4.1.3 Bounded-Cost EBG

Factors Influencing BEBG Utility

As described in Chapter 2, BEBG is a variant of EBG. Specifically, BEBG
instantiates the expensive variables of rules generated by EBG. This reduces
the generality of the rule, but increases its application efficiency. In terms of
the generality-efficiency tradeoff, BEBG rules he between EBG and caching
in terms of both generality and efficiency.

Because BEBG is very similar to EBG, the factors that influence EBG
utility tend to also BEBG utility. However, there are differences. Since
BEBG rules have no expensive variables, the application cost of such a
rule is independent of the domain size of any relation. Also, the potential
specificity of a BEBG rule means that such a rule may only be useful under
specialized query distributions.

BEBG Ideal Utility

Let:

UBEBG(A) = the utility of BEBGing query instance A.
Bebg(A) = the rule resulting from applying BEBG to A.
\S{R)\ — the number of times rule R has been or could have been

applied successfully.

BEBG utility is very similar to EBG utility. The following equations are
identical.

UBEBG(A) = BenefitBEBG(A) - CostBEBc{A) (4.29)

v(A)
BenefitBEBG(A) = £ [RSucc(Bebg(A), Q(i)) x r(i)] (4.30)

! = 1

CostBEBG(A) = Cost^al(A) + Costi™ginal{A) + Cost^{A) (4.31)

Costspace(A) = Kcons x C{Bebg{A)) x V{A) (4.32)

Cost%%al(A) = Kput + KEBG x C{£*{A)) (4.33)

n(A)
Cost^nai(A) = J2 MEbg{A)MVWEbg(A)MWoslffiy_rvIe(Ebg(A),Q(i))]

(4.34)

43

The application cost of BEBG rules is independent of the domain size of
any relation. Hence,

Cost^y_rule(R,A) = T(A,Ants(R)) (4.35)

BEBG Utility Unknowns

The BEBG unknowns are identical to the EBG unknowns. They are:

• LA* [RSucc(Bebg(A), Q(i)) x r(i)}

• Etf^BebgiA^Qii))

• a(Bebg(A),Q(i)),l < i < V(A)

• H-)

BEBG Utility Estimates

As for EBG, ISM makes the foUowing BEBG utility approximations for:

&(Bebg(A), Q(i)) « 1,1 < * < T?(A) (4.36)

v(A)

E**^),S(0)J"^y (4-37)
The following BEBG approximations differ from those of EBG:

T(A,R) » Kavpiy-rvie\Ants{R)\ (4.38)

Theo applies rules by calling Theo on each rule antecedent. Since each an-
tecedent has no expensive variables, each Theo call takes only constant time.
Hence, the rule application time is taken to be proportional to the number
of antecedents in the rule. This approximation is not always accurate; de-
pending on Theo's state, the rule can fail before all the antecedents have
resulted in Theo calls. However, the application cost of BEBG rules is small
enough relative to that of EBG rules that this inaccuracy, in practice, does
not hurt ISM's management policies.

(4.39)

44

The benefit estimate of invoking BEBG is similar to that of EBG. In fact, it
is taken to equal the benefit of invoking EBG scaled by factor representing
the success rate of the BEBG rule relative to the EBG rule success rate. If we
assume that the formula giving the EBG rule benefit is correct, the BEBG
approximation is very accurate. It has the drawback, however, of giving the
average expected benefit over the entire time ISM has been running. Hence,
this measure may be slow to respond to environment dynamics.

It is important to note that ISM cannot initially estimate \s(Eb3(A))\
with any accuracy.

Bounded-Cost Rule Generation and Elimination

The BEBG utility analysis is used by ISM to generate BEBG rules. How-
ever, unlike the EBG situation, ISM does not eliminate BEBG rules. The
overhead associated with their use is considered small enough that they will
never substantially decrease Theo's performance. This strategy reduces ISM
overhead by obviating the need for ISM to monitor BEBG rule use data.

BEBG Sensors

Most of the BEBG utility data monitoring demands are handled by the EBG
sensors, which have been discussed previously. However, ISM requires some
data not monitored by sensors already discussed. This data is:

\S(Bebg(A))\
• \S(Ebg(A))\

• \Ants(R)\ ■

ISM cannot monitor, or even estimate, the first item with any accuracy
until after an EBG rule is generated. After this point, as the rule is being
used by the system, ISM can sense for this data by monitoring the rule's
usage patterns. This effects ISM's behavior in an important way: ISM will
only apply BEBG to a query instance after EBG has been applied to the
instance. ISM's data requirements for estimating BEBG utility essentially
makes EBG a precondition to BEBG.

After EBG generates a rule R, iTs expensive variables, if any, are recorded
in the knowledge base. This is determined from the structure of R. Then,
whenever R is applied successfully, sensors record:

• the number of times R has been successfully applied, Successes(R).

45

• a history of the instantiation-values of ExpVars(R) during i?'s suc-
cessful applications.

• the number of matches between the current instantiation values of i?'s
expensive variables and those recorded in the ExpVars(R) instantiation-
value history, \ExpVarMatches(R,A)\. This gives the number of
times that a bounded-cost version of rule Ä, whose expensive vari-
ables were instantiated with the values needed to successfully solve A,
would have been successful since R was generated.

\S{Bebg(A))\ ■ , , . } \ExpVarMatches\Ebg(A)M Th .
\S(Ebg(A))\ 1S XaKen l° e(lUai Successes[Ebg{A)] ' lneSe tWO <lUan

tities differ only shghtly: the latter measures BEBG's relative success rate
over the lifetime of the EBG rule; the former measures it over the lifetime
of the system.

These sensors are long-term due to BEBG's initial application cost. A
larger pool of data gives ISM a better chance of predicting BEBG utility
correctly. Long-term sensors are also more efficient than those operating
over a shorter term.

Since BEBG cannot be invoked until after EBG is invoked, sensing
\Ants(R)\ is straightforward: this quantity is equal to the number of an-
tecedents of the rule with at least one non-expensive variable.

BEBG Effectors

As with caching and EBG, BEBG is invoked by ISM via a flag. As the
inference for the current query instance is concluding, ISM calculates the
utility of applying BEBG to the instance. If ISM chooses to apply BEBG, a
flag is set. After the inference ends, Theo checks the value of this flag, and
if it is set, BEBG is applied.

4.2 Managing Speedup Mechanisms

As described in the previous section, the following speedup mechanism man-
agement actions are available (via effectors):

• cache: cache a query instance result

• cache: do not cache or uncache a query instance result

• EBG: generate an EBG rule on a query instance

46

• EBG: eliminate an EBG rule

• BEBG: generate a BEBG rule on a query instance

Hence, for each query instance, ISM faces the issue: which action or set of
actions should be taken to increase Theo's efficiency? ISM needs speedup
mechanism utility estimates for this decision, but exactly how is this decision
made?

4.2.1 Possible Management Strategies

An Aggressive Strategy

At first glance, a reasonable management strategy would be to apply every
action whose associated utility was positive. However, there are poten-
tial problems with this approach. ISM's utility estimates are based on the
speedup expectations of each mechanism in isolation - the estimates do
not take into account the effects between speedup mechanisms if invoked
simultaneously. This is a problem in the situations where multiple mecha-
nisms do not give any additional speedup leverage over a single mechanism,
or where multiple mechanisms interact negatively. Under these cases, this
management strategy is inefficient if the overhead of applying the multiple
mechanisms exceeds the overhead of applying a single mechanism.

For instance, if an address A is repeatedly requeried, and the knowledge
base is stable, both caching and EBG will have positive utilities. However,
caching is sufficient - applying both EBG and caching will not result in more
speedup than applying only caching. In fact, using both EBG and caching is
less efficient than using only caching in this situation due to the non-trivial
initial cost of EBG. This will be referred to as the initial-cost problem.

There is another similar but more subtle problem. Suppose a query
sequence consisting of two subsequences, Si and 52, occurs repeatedly. Si is
a sequence of query instances for which EBG has negative utility. 52 consists
of a number of repeated queries to address A under a stable knowledge base.
EBG's utility for 52 is positive, perhaps positive enough to outweigh EBG's
negative utility for 5i, in which case a rule would be generated. Caching
is also useful for 52, so ISM would apply caching to A. Unfortunately,
caching effectively nullifies EBG's utility for 52. In this case, EBG will
actually decrease architecture efficiency, since the learned rule utility for Si
is negative. Essentially, EBG is never able to realize its speedup expectations
because of caching. However, EBG's potential to slow down the system does
materialize. This will be referred to as the negative-utility problem.

47

Both these problems stem from the fact that ISM's utility estimates
do not take the effect of other speedup mechanisms directly into account.
Hence one mechanism may cause another to actually hurt architecture per-
formance.

A Conservative Strategy

The initial-cost and negative-utility problems show that applying all speedup
mechanism management actions whose associated utilities are positive can
be a poor management technique. One way of handling this problem is
to allow only one management action per query instance. This prevents
the unforeseen speedup mechanism interaction problem, since the effects
of every management action become visible (through sensing data) before
another potentially interfering management action is considered.

Unfortunately, this strategy seems overly restrictive. It can be useful to
have the ability to invoke multiple management actions at the same time,
since this gives the manager more flexibility. This kind of flexibility allows
the manager to modify the architecture's operation at a faster rate, which
can lead to better performance during periods when the architecture's envi-
ronment is changing.

4.2.2 ISM's Management Strategy

ISM's management strategy provides the flexibility of allowing multiple
simultaneous management actions while side-stepping the initial-cost and
negative-utility problems. These problems arise because the invocation of
one mechanism can reduce the utility of another (though this property is not
reflected in ISM's utility estimates). If this is the case, these mechanisms are
said to interfere. In a nutshell, ISM's strategy allows multiple management
actions except when they interfere with each other.

To find these interferences, ISM considers the utility function associated
with each management action. If the sensing data needed to determine the
Utility for an action (say, A{) can be affected by another action A2, A\ and
A2 interact. If, however, A2 affects the sensor data of A\ in a way that
can decrease Ai's utility, the mechanisms interfere. Similarly, if A\ affects
sensor data in a way that decreases A2's utility, A\ interferes with A%.

For example, let Ai = EBG and A2 = cache. Uncaching the query
instance can change Costinf, which is used to estimate the utility for A\.
Hence, A\ and A2 interact. However, A2 can only increase Costing. Increas-

48

cache <—► EBG
cache <—► J55G
cache <—► BEBG
~EBG <—> BEBG

Figure 4.1: Interfering Speedup Mechanism Management Actions

cache <—► EBG
cache <—► EBG
cache <—► BEBG

Figure 4.2: Non-Interfering Speedup Mechanism Management Actions

ing Costinj cannot decrease the utility of A\. Consequently, A\ and Ai do
not interfere.

On the other hand, let A\ = cache and A2 = EBG. Again, there is an
interaction between A\ and A2. In this case, EBG can decrease the value of
Costinf. This can reduce the utility of Ai, which means EBG interferes with
caching. Hence, ISM will never invoke EBG and caching simultaneously.

To determine the possible interferences between the management ac-
tions, all pairs of actions along with their associated utility estimates have
been analyzed similarly. Figure 4.1 shows the interfering actions. All the
interferences are due to the Costinf data.

The non-interfering actions are shown in Figure 4.2. These have been
determined from the interfering actions as well as constraints between the
complementary actions (i.e., an action and its complement cannot be invoked
simultaneously) , and the observation that BEBG can be applied only after
EBG has been applied (as discussed in the BEBG utility analysis).

The ISM Algorithm

ISM determines which management action to take according to the following
algorithm:

49

At the conclusion of each query instance I:
For each management action A:

Estimate the utility of applying A on I.
Construct a list L of actions sorted from highest to lowest utility
For each A' in L with associated utility U'

If U* > 0 and
A' does not interfere with any other action applied to I

Apply A' to I.

This algorithm combines the flexibility of allowing multiple simultaneous
management actions with the safety of allowing only one management action
per query instance. ISM's choice of applying the action with the greatest
utility shows that ISM utilizes a modified hill-climbing algorithm.

Note that estimating the utility of every management action for every
query instance can be prohibitively expensive. Calculating utilities for ev-
ery query instance implies that ISM's monitors must be applied to every
instance, as well. ISM manages this overhead by limiting the query in-
stances for which utilities are calculated and from which data is sensed.
These strategies are discussed in the "Managing ISM Overhead" chapter.

4.3 Experiments

In this section, two questions are studied experimentally:

• How accurate are ISM's utility approximations?

• How efficient is ISM's management strategy relative to the aggressive
and conservative extremes?

4.3.1 Utility Approximations

Caching Utility Estimate

In Figure 4.3, ideal caching utility is shown against ISM's caching utility
estimate. In this experiment, the same top-level query instance Q is repeated
15 times. The knowledge base is stable up to the fourth top-level query,
which is Region 1. From the fifth to the ninth top-level query, Region 2, the
knowledge base is unstable. Following that, in Region 3, it becomes stable
again.

50

Utility in seconds

5.00

4.50

4.00

3.50

3.00

2.50

2.00

1.50

1.00

0.50

0.00

Ideal Caching Utility

ISMCächmgÜtiiity

/
\
\ /..-

Top-level Inferences
0.00 5.00 10.00

Figure 4.3: Ideal and Estimated Caching Utilities

51

Consider the figure's ideal caching utility. The initial query requires
almost 5 seconds to infer. However, because this initial inference causes
various subinferences to be cached, <3's reinference time is only about .2
seconds. Hence ideal caching utility equals about .2 seconds in Region 1. In
Region 2, the knowledge base is unstable. Caching Q would result in some
TMS overhead, so ideal caching utility is negative. When the KB becomes
stable again, in Region 3, caching utility resumes its earlier value.

Now consider ISM's caching utility estimate. ISM's sensors initially find
that inferring Q takes almost 5 seconds. Because Q is cached at the conclu-
sion of the first inference, ISM has no opportunity to update <Q's inference
time - ISM's sensors cannot know a reinference would take far less time.
Hence in Region 1, ISM consistently overestimates the utility of caching Q.

In Region 2, at query 5, ISM's estimate falls drastically. During this
query, ISM must reinfer Q for the first time. This causes ISM to substantially
lower its reinference time estimate, which accounts for almost all of the
utility estimate drop. The remainder of the estimate drop is due to the
fact that Probstabie(Q) has fallen slightly, since the value of Q is unstable in
Region 2.

In Region 2 after query 5, ISM's utility estimate drops until it matches
the ideal caching utility. Probstable{Q) is responsible for this behavior. KB
dynamics cause Probstabie(Q) to lower incrementally until it reaches 0 at
query 8, whereupon estimated utility equals ideal utility.

This process is reversed in Region 3. Probstable(Q) increases until it
reaches 1.0, causing ISM's estimated utility to increase, until it equals ideal
utility.

This figure shows typical utility estimate features. Initially caching util-
ity is considerably inaccurate because ISM's sensors need time to learn
Theo's steady-state behavior. ISM's utility estimates also always experi-
ence a delayed-reaction during architecture dynamics - from Region 1 to
Region 2, for example. This results from the sensor accuracy/reactivity
tradeoff points chosen in ISM's design.

EBG and BEBG

In Figures 4.4 and 4.5, ideal marginal utilities are compared with ISM's
utility estimates. These experiments have four regions. Region 1 (queries 0
to 4) consists of queries for which a learned rule R is useful. In Region 2
(queries 5 to 9), R cannot be applied. In Region 3 (queries 10 to 14), R can
be applied, but is not successful. In Region 4 (queries 15 to 19) R is again

52

successful.
The ideal EBG utility analysis is straightforward. In Region 1, the rule

saves .175 seconds per query. In Region 2, the rule cannot be applied, and
hence has no utility. In Region 3, the overhead of applying R unsuccessfully
is .025 seconds. Finally, Region 4 gives the utility of the rule when it is
successful.

Because EBG and BEBG sensors are long-term, ISM utility estimates
for these speedup mechanisms depend on the history of the system. Because
many sensor values are averaged over the life of the system, a short history
causes utility estimates to be more "jumpy;" a long history causes ISM to
react much more slowly to architecture dynamics. The different EBG and
BEBG curves reflect different histories. This effect is evident in Figure 4.4.
The widely-varying curves result from a shorter sensor history. Because the
BEBG and EBG utility estimate curves essentially share common charac-
teristics, only a single explanation for all of the curves will be given.

Assume R is generated from query instance Q. Because R is success-
ful for queries in Region 1, \Inf StructM atches(Q)\ increases, causing esti-
mated utility to increase. In Region 2, \Inf StructMatches(Q)\ = 0, and the
slots of the queries in the region do not equal slot(Q). Hence utility equals
0. In Region 3, \queries(slot(Q))\ increases, but because R cannot be used,
\Inf StructMatches(Q)\ stays constant, causing utility to fall. Finally, in
Region 4, increasing inference structure matches cause estimated utility to
rise.

Note that, initial values of ISM's estimates (for each region) can be very
incorrect. This characteristic results because ISM cannot know the future;
it must assume that past events essentially guide future events. Because
this is an inherent limitation, there is no way to minimize this problem.

When comparing ideal EBG/BEBG utility with estimated utility, we
see that in the different regions, ISM's estimates approach the ideal utility
calculations. However, because of ISM's long-term sensors, ISM's estimates
can never equal the ideal utility calculations - in contrast to ISM's caching
utility estimates.

It is evident that ISM's caching estimates are far more accurate than its
EBG/BEBG utility estimates. However, estimating the latter quantities is
a much harder problem. Furthermore, these estimates are accurate enough
that ISM is able to meet its performance goals. ISM's overall performance
is demonstrated in the "Experimental Results" chapter.

53

Utility in seconds x 10'

180.00

170.00

160.00

150.00

140.00

130.00

120.00

110.00

100.00

90.00

80.00

70.00

60.00

50.00

40.00

30.00

20.00

10.00

0.00

-10.00

-20.00

-30.00

0.00

,-3

/■ 1
/ I

<• 1 x

1 i
i

i

i
i
i

\ \
\ ,,--'

i
i

■
i
i

\
<-"'

i
i
i

--,.

.-*" 1 i ; i;

I ■
""'-•■-......-

', i
; i

r;

•;
i;

'■
i;
i;

i;
i;
i;

<
t
t
1 .. ^~-~~*'

^ ** - ~
\

\
\

Ideal EBG Utility

ISMElGÜfflity'T

ISM EBG Utility 2

ISMEB'G'OtilityT

5.00 10.00
Top-level Inferences

15.00

Figure 4.4: Ideal and Estimated Marginal EBG Utilities

54

Utility in seconds x 10'

200.00

190.00

180.00

170.00

160.00

150.00

140.00

130.00

120.00

110.00

100.00

90.00

80.00

70.00

60.00

50.00

40.00

30.00

20.00

10.00

0.00

-10.00

■3

\ .'

N 1

Ideal BEBG Utility

ISMBBBGUtiiity''

Top-level Inferences
0.00 5.00 10.00 15.00

Figure 4.5: Ideal and Estimated Marginal BEBG Utilities

55

CAP MN
Conservative
Aggressive

ISM

143.4
164.0
142.0

47.3
52.8
46.8

Figure 4.6: Management Strategy Performance: inference time (seconds)

4.3.2 Management Strategy

Experiments were conducted using the CAP and MN domains, both of which
are described in the "Experimental Results" chapter. These results are
summarized in Figure 4.6.

In both domains, ISM's strategy is superior to both the conservative
and aggressive strategies. Also, in both domains, the conservative strategy
is superior to the aggressive strategy. To some extent, this is to be expected.
Functionally, for the speedup mechanisms handled in this thesis, the differ-
ence between ISM's strategy and the conservative strategy is small. Rarely,
if ever, would ISM need to simultaneously apply cache and EBG, cache and
EBG, or cache and BEBG. With a different set of speedup mechanisms,
such an ability could be much more useful. However, for caching, EBG,
and BEBG, it is not. Hence, the conservative strategy almost equals the
performance of ISM's strategy.

On the other hand, it is fairly common for caching, EBG, and BEBG
to interfere. Hence, ISM performance is significantly higher than the per-
formance resulting from aggressive management of speedup mechanisms.
For instance, in the CAP domain, the aggressive strategy invokes EBG 25
times; ISM's strategy invokes EBG only 9 times. This result, along with
performance comparisons, demonstrate the problems with the aggressive
management strategy.

4.4 Managing Additional Speedup Mechanisms

This thesis uses the caching, EBG, and BEBG mechanisms to test the effi-
cacy of ISM. However, for an agent such as ISM to be truly useful, it must
be possible to augment the agent to handle additional mechanisms. How
can this be done? To add a mechanism M is ISM, the following analysis is
required:

56

• Determine the ideal utility of M - its fixed and marginal costs and
benefits given perfect information about the operation of the architec-
ture.

• Estimate the data needed for the ideal utility calculation in some rea-
sonable way. This gives the utility estimate.

• Design sensors that are able to monitor the data required for the utility
estimate.

• Determine the speedup mechanisms with which M can interfere.

This analysis allows ISM to estimate the utility of M for any query, and to
use M (with the other mechanisms) effectively.

4.4.1 A Brief Example

Consider inference methods. For every query instance Q, Theo retrieves
<3's methods, and tries each in order. The first succeeding method is used
to infer Q. If methods are ordered poorly, Theo can spend much of its
time applying useless methods. A speedup mechanism can be designed to
minimize this problem; sort the inference methods of a query instance by
their average cost-benefit ratio.

Ideal Utility

When invoked, this mechanism has the following initial time costs:

• Time needed to retrieve methods data

• Time needed to sort methods

• Time needed to store sorted methods

That is,

Costinitiai(A) = Kget£(\methods\) + KSOTt(L{methods))2 + Kput (4.40)

These quantities are simple to monitor.
Once the methods are sorted and stored back into the knowledge-base,

a time-cost is incurred every time these methods are used. This time-cost
equals the inference time of the query. More precisely, let

57

, ., s I 1 if query q uses methods list m
^ro)={0 otherwise
SM(q) = the sorted methods of query q

Then,

v(A)
Costmarginal(A) = J2 M{Q{i),SM{A))Costl°nf

d{Q{i)) (4.41)
i-l

On the other hand, methods sorting saves the inference time that would
have occurred with the unsorted methods.

V(A)

Benefitmarginal(A) = £ M(Q(i),SM(A))Cost^°rted(Q(i)) (4.42)

Because space costs are minor, they have been ignored.

Estimates and Sensors

Let A be a query instance, and m = SM(A) be the methods list under
consideration. The following quantities are unknown:

• Costmarginai(A): This can be computed if ISM monitors the success
rate and average inference time of each of the methods in m. ISM
simply finds the optimal methods ordering and computes the expected
application time of the resulting list. This is multiplied by the number
of times m is used over the utility calculation time-period, which can
be taken be equal l°reKca««ons(m)|

• Benefitmarginai(A): This can be determined by computing the av-
erage inference time of any problem instance using methods list m,
multiplied by the number of times m is applied over the time-period.

These estimates seem to be good approximations of the ideal quanti-
ties needed for the utility calculation. Unfortunately, the first estimate is
very expensive to compute - perhaps as expensive as actually invoking the
methods-ordering speedup mechanism. How can this problem be handled?

58

The actual quantity of interest in this utility calculation is the net marginal
benefit of methods ordering:

Benefit^rgnl(A) = £ M(Q(i),SM(A)[Cost^ftd(Q(i)) - Cost$(Q(i))]

(4.43)
A first-order approximation can be taken to equal the expected failure time of
the first method TOI of m, FailureRate(mi)Costapp(mi) where Costavv(m\)
equals the time needed to apply m\. Obviously this approximation is very
rough. However, note that it supports ISM's goal of never decreasing Theo's
efficiency. That is, the approximation is a lower bound.

Interestingly, many of the sensors needed by ISM to manage methods-
ordering are used for caching, EBG, and BEBG management. In general,
utility calculations for multiple speedup mechanisms require similar sensor
data. Hence, adding speedup mechanisms is usually not a difficult task.

Interferences

To ensure that no complications or unwanted interactions result from adding
additional speedup mechanisms, it is necessary to determine which speedup
mechanisms can interfere. Since methods-ordering can decrease the inference
time of a query, methods-ordering interferes with caching, EBG, EBG and
BEBG.

4.5 Summary

In this chapter, ISM's basic speedup mechanism management strategy was
discussed. ISM's operation is based on a utility analysis. Although ISM
can only estimate speedup mechanism utilities due to sensor limitations, the
derivation of ISM's utility estimates from ideal utilities show ISM's approxi-
mations to be reasonable. Furthermore, experimental data show that ISM's
estimates are effective.

ISM's actual management decision strategy entails an analysis of the
interfering and non-interfering management actions available to ISM. This
strategy combines the advantages of aggressive and conservative speedup
mechanism application strategies, and avoids their disadvantages.

The fine-grained experiments conducted in this chapter give a feel for the
accuracy of ISM's utility estimates, as well as the efficacy of ISM's decision
strategy relative to the conservative and aggressive extremes. Larger-scale

59

demonstrations of ISM performance can be found in the Chapter 7, Exper-
imental Results.

60

Chapter 5

Reducing the System
Efficiency/Flexibility
Tradeoff

The architecture flexibility/efficiency tradeoff was defined in Chapter 1.
Reasons for the existence of this tradeoff were also presented. Briefly, a
flexible system allows the user to specify the behavior of the architecture
at a finer grain-size. However, supporting this flexibility means the archi-
tecture must, at run-time, infer its own behavior, reducing system perfor-
mance. Current architectures allow the user to operate at only a single,
fixed flexibility-efficiency tradeoff point.

This chapter presents a technique whereby architectures can operate at
different tradeoff points, depending on the needs of the user or domain.
Moreover, this technique allows the architecture to determine the proper
tradeoff point it autonomously. That is, this chapter shows how Theo's
inference can be modified to give the configurability of a flexible, slow sys-
tem, but give the efficiency of an inflexible, fast system - it allows flexibility
if required by the domain, but if not required, it automatically increases
inference efficiency.

Theo's inference mechanism essentially consists of a search through the
knowledge base for relevant data. Often, this search is inefficient - many
of the inference paths that are explored fail. This chapter discusses an al-
gorithm that ISM uses to avoid unsuccessful search paths in a way that
does not modify Theo's semantics, uniformity, or flexibility. Unlike the
techniques discussed in the previous chapter, this algorithm does not opti-

61

mize Theo's inference via a dynamic, run-time analysis. Instead, it analyzes
Theo's knowledge base prior to run-time, statically. This analysis allows the
algorithm to intelligently prune Theo's inference search paths, increasing
Theo's efficiency. I.e., the static analysis determines an inference boundary
outside which any inference must fail. This boundary allows Theo to avoid
some search, increasing efficiency. The boundary for any query instance is
determined from the methods of the instance as well as the state of the
knowledge-base.

This chapter motivates the ISM algorithm by discussing the particu-
lar inefficiency in Theo's inference mechanism that the algorithm addresses,
then proceeds by explaining the architecture design choices leading to this
inefficiency, and shows why Theo's existing speedup mechanisms are insuf-
ficient to handle the problem. The algorithm is then described, and an
illustrative example is given.

5.1 Theo's Inference

Consider Theo's inference strategy. Theo infers the value of a problem in-
stance (say, P) via a backward-chaining search through the knowledge base
for data relevant to the problem. This search is conducted recursively, depth-
first. Typically, it terminates with the first recursive inference that returns
a value.

Theo's actual search paths are specified in the knowledge base by the
methods of the problem instance P. Each of P's methods gives a new problem
instance (or set of instances) whose value Theo attempts to infer. Note that,
due to Theo's uniformity, determining the value of the system-level (or meta-
level) methods slot of P is itself a new problem instance.

To illustrate, consider a simple example. Assume that P = (square
height) and the state of the knowledge base is as follows:

(square *novalue*
(generalizations (rectangle))

(height *novalue*
(methods (inherits default.value))

(default.value *novalue*

(methods (drop.context inherits)))))

(height *novalue*

(default.value 5))

62

The methods of P specify that inheritance and default-value should be
applied to infer P. Hence, Theo begins its search by applying inheritance;
this results in the new problem instance or subgoal (rectangle height). This
inference path may lead to even more subgoals, one of which may be suc-
cessful, terminating the top-level inference. Assume, however, that the in-
heritance method is not successful for P - i.e., (rectangle height) = in-
ferred.novalue*. At this point, Theo tries the default-value method for P,
causing Theo to subgoal on (square height default.value). Theo proceeds
by applying drop.context, subgoaling on (height default .value) which finally
returns a value, terminating the inference. This inference search is depicted
in Figure 5.1.

For the purposes of discussing Theo's inference, it is useful to define
several quantities. For a top-level query with address A, let

T(A) = A's inference tree, including meta-level inferences
1(A) = set of addresses of immediate inferences

resulting from query to A
I*(A) = transitive closure of 1(A), i.e., 1(A), I(I(A)), ...

B(A) = leaves of T(A) which contain values from which the
value of A is derived

For Figure 5.1,

A = (square height)

T(A) = entire graph

1(A) = {(rectangle height) (square height default.value)

(square height methods)}

I*(A) = T(A) - A

B(A) = {(height default.value)}

5.2 Inefficient Meta-Level Inference

Although this inference mechanism is very natural, it can be quite inefficient.
Exploring a search path can require many recursive inferences, even in a very
simple knowledge base. If the search path is unsuccessful, the time spent
exploring that path is wasted. For example, in a knowledge base similar to
that presented above, determining the value of (square height) requires 360
inferences. Of these, Theo requires 202 inferences to explore the unsuccessful

63

square height

inheritance

square height methods

7
default.value

square height default.value

rectangle height
dron.context

inheritance

-J. square height ;
default.value i
methods !

height default.value = 5

Figure 5.1: Inference Paths for (square height)

64

inheritance search path. Why so many for such a simple knowledge base?
Recall from Chapter 2 that Theo's behavior is largely specified by data in
the knowledge base, implying that Theo must determine its behavior via
run-time system-level inference. Theo is so flexible, in fact, that the vast
majority of inferences are system-level inferences. In the above example,
193 of the 202 inferences are meta-level inferences. Typically, this ratio is
much lower, but still significant. In the CAP domain, which is described in
Chapter 7, system-level inferences outnumber the "ground-level" inferences
by a factor of 6.

From this data, it is clear that Theo's efficiency is limited primarily by
the amount of meta-level inference. Recall that, due to Theo's uniformity,
Theo handles meta-level inference the same way it handles ground-level in-
ference. In particular, Theo uses methods to determine its search strategy
when inferring system-level slot values. One of the sources of meta-level
inference inefficiency results because the methods of meta-level slots have
not been optimized. That is, methods often fail because Theo's knowledge
bases typically specify methods for meta-level slots at only a very coarse
grain-size. Unfortunately, because of the sheer volume of system-level slots
and query instances, it is virtually impossible for users or knowledge-base
designers to optimize the methods of meta-level query instances.

5.3 Meta-Level Inference and Architecture Flex-
ibility

The vast amount of meta-level inference that Theo must conduct decreases
Theo's efficiency considerably. Why have all this meta-level inference? Why
was Theo designed in this manner? Although wasteful from the efficiency
point of view, Theo's meta-level operation derives from some of Theo's fun-
damental design principles: flexibility and a highly uniform representation.
Theo's representation allows beliefs to be held about any problem, whether
the problem is part of the task domain or whether the problem involves
Theo's own operation and inference strategies (i.e., the meta-level). This
makes Theo very flexible. Since Theo's operation is governed by its beliefs
as to how to approach problems, the ability to maintain distinct beliefs for
every problem instance implies that Theo's operation can be configured for
a particular problem instance independently of any other problem instances.
This also gives Theo the ability to reason about itself. Unfortunately, this
capability means that meta-level, or system inference is treated similarly

65

to ground-level, or task domain inference. Consequently, just as ground-
level inference results in several system-level inferences, these system-level
inferences result in even more system-level inferences. One of Theo's most
interesting features is its ability to reason about itself. The price for that
ability is the meta-level inference "bottleneck."

To understand the extent of Theo's configurability and flexibility, con-
sider the knowledge-base fragment Figure 5.2. This knowledge base demon-
strates fine-grain control over the whentocache slot. In this knowledge base,
four different caching strategies are used for different intersecting classes
of problem instances. Because the primary whentocache inference method
is inheritance, the most specific class contains all problem instances that
are specializations of (square height whentocache). Those belonging to this
class, such as (squarel height whentocache) use the sq-cache caching strat-

egy-
The next larger class contains all specializations of (rectangle height

whentocache), such as (rectl height whentocache). The caching strategy of
this class of query instances is rect-cache. Note that members of the (square
height whentocache) also belong to this larger class. However, membership
in smaller classes have precedence over membership in larger classes. Hence,
(squarel height whentocache) uses sq-cache rather than rect-cache.

The secondary whentocache inference method is drop.context. Hence, all
problem instances of the form (<entity> height whentocache) are contained
in the next class. Again, this class contains the previous two.

The largest, and final class contains all problem instances. The methods
of whentocache specify that default-cache is the caching strategy for all
query instances not contained in the previous three classes.

This example shows how Theo can be configured to use four different
caching strategies in different situations. Theo's methods provide a powerful
way in which problem classes may be defined. Although this example deals
with the whentocache system slot, most of Theo's other system slots operate
in an identical fashion.

The above knowledge base also shows how Theo's meta-level inference
can be inefficient. Typically most whentocache query instances will belong
to the largest class - the class using the default-cache strategy. However,
when inferring values for members in this class, (whentocache methods)
specifies that Theo must always first apply the inheritance method. In this
situation, inheritance will always fail.

66

(square *novalue*

(generalizations (rectangle))

(height *novalue*

(whentocache sq-cache)))

(squarel *novalue*

(generalizations (square)))

(rectl *novalue*

(generalizations (rectangle)))

(rect2 *novalue*

(generalizations (rectangle)))

(rectangle *novalue*

(height *novalue*

(whentocache rect-cache)))

(height *novalue*

(whentocache height-cache))

(whentocache *novalue*

(methods (inherits drop.context default.value))

(default.value default-cache))

Figure 5.2: A Knowledge-Base Fragment

67

5.4 Using Speedup Mechanisms to Increase Effi-
ciency

We have seen that Theo's design leads to large amounts of meta-level infer-
ence, much of which is inefficient due to nonexistent methods optimization.
Can any of Theo's speedup mechanisms help in this situation?

5.4.1 Caching

Caching provides a partial solution. Caching allows Theo to remember the
results of all of the recursive subqueries initiated by the top-level query. The
results of these subqueries can be general; consequently, if cached, they may
be reused in the future, saving Theo some re-inference time.

For example, consider the following knowledge base:

(boxl *novalue*
(generalizations (box)))

(box2 *novalue*
(generalizations (box)))

(whentocache *novalue*
(methods (inherits drop.context default.value))
(default.value caching.on))

Assume Theo first infers the value of (boxl height whentocache). This
value will be caching.on. However, before finding this value, Theo applies
the inheritance method, which fails. While applying this method, Theo finds
that (box height whentocache) = inferred.novalue*. If it later must infer
the problem instance (box2 height whentocache), Theo must once again
infer (box height whentocache). If this value was cached, the time spent
searching this inference path would be saved.

Note that caching is only useful as a speedup mechanism if the values
cached are stable. Does this pose a problem? The inference bottleneck
that this chapter is concerned with deals only with meta-level inference.
Fortunately, meta-level values are very stable, allowing caching to effectively
increase meta-level inference efficiency.

On the other hand, however, caching does not provide a perfect solution.
In domains in which there is not much query instance repetition, the gener-
ality of the cached values can be very small relative to the query distribution

68

- previously cached values may not be reused very frequently. The CAP do-
main, described in Chapter 7, has this characteristic. ISM's algorithm is
useful under all conditions, but especially in this situation.

5.4.2 EBG

EBG is much less effective than caching for increasing meta-level inference
efficiency. One approach is to attempt to learn control knowledge. EBG
could be used to learn control knowledge in two different ways: by learning
the situations under which methods are successful, and by learning situations
under which methods are unsuccessful. The semantics of Theo, however,
dictate that only the latter strategy is useful. Theo's methods are usually
treated as ordered lists, rather than sets. Consequently, to preserve correct
Theo behavior, it is necessary to apply the methods in order, unless they
are known to be unsuccessful.

For example, assume that the following methods are to be applied to a
particular problem instance: (inherits drop.context default .value). Assume
that an EBG rule posits that default.value is a successful method. Further
assume that it is not known whether inherits or drop.context is successful
or unsuccessful. In this situation, Theo must first apply inherits even if it
knows that default .value will be successful. That knowledge is not useful. On
the other hand, if another EBG rule shows that inheritance is unsuccessful,
Theo can skip that method.

Unfortunately, using EBG to learn unsuccessful methods results in a very
"bushy" rule, since the result is a proof of failure. This kind of rule is very
expensive to generate, and tends to be rather specific. Thus, in practice,
EBG does not increase Theo's meta-level inference efficiency.

5.5 Algorithm Overview

The previous section shows some of the limitations of using Theo's speedup
mechanisms to increase meta-level inference efficiency. ISM uses a different
approach. It optimizes Theo's inference by determining, prior to run-time,
some of the search paths - i.e., methods - that cannot be successful. This
information is utilized at run-time to prune Theo's search, resulting in more
efficient inference. Hence, instead of applying speedup mechanisms to make
Theo more efficient, ISM modifies Theo more fundamentally by altering
Theo's actual search mechanism.

69

The idea is to determine before run-time, for a problem class (i.e., set
of problem instances) P, the value-containing addresses in the knowledge
base from which the values of elements of P can be computed. This set
of addresses is, by definition, B(P). Problem classes for query instances are
organized by the slots of those query instances; all problem instances with
the same slots belong to the same class. Hence, a problem instance (x y...S)
belongs to the class S. Notice that every query instance belongs to one and
only one problem class. For the knowledge base in Figure 5.2, let

P = whentocache

Then,

B(P) = {(square height whentocache)
(rectangle height whentocache)
(height whentocache)
(whentocache default.value)}

Notice that to infer the value of an element of P, Theo must use the value
of at least one of the addresses in B(P). Also, Theo cannot infer the value of
an element of P from addresses not in B(P). ISM uses B(P) to determine the
methods that can possibly be used to successfully infer values of elements
of P - i.e., the methods which lead to inference paths that involve addresses
in B(P). These are called P's potentially successful methods. Other methods
cannot be successful. ISM uses these failing methods to prune inference of
elements of P by simply not applying any of P's failing methods.

ISM determines the potentially successful methods of P from B(P) by
examining the form of the addresses in B(P) and the structure of the knowl-
edge base. For instance, if (box height default.value) is an element of B(P),
then default .value is a method that can potentially succeed, since the de-
fault .value method results in queries of addresses whose slot equals "de-
fault .value". ISM uses this kind of reasoning to determine whether inheri-
tance, drop context, and default value can succeed for each problem instance,
and uses this knowledge to prune the methods search path.

In a sense, this algorithm can be considered a form of control-knowledge
learning. However, instead of learning at run-time via observation, it dis-
covers control knowledge using a "knowledge-base-preprocessing" strategy.

70

5.6 Algorithm

Let S be a slot. Let PC(S) be the set of all problem instances whose slot
equals S - i.e., all problem instances with addresses of the form (...S). If
address A equals (x yz), let right(A) equal z and left(A) equal x.

71

Prior to run-time, ISM:

1. Finds the set of inference methods of the elements of PC(S) by
mimicking Theo inference for the problem instance (S methods).
Call this set M(S).

2. Determines from M(S) the set of all value-containing addresses in
the knowledge base needed to compute the value of any element
of PC(S). Call this set B(PC(S)). Elements of B(PC(S)) are said
to be relevant to PC(S).

To do this, ISM finds all existing (i.e., "non-virtual") addresses
in the knowledge base that have values, and collects the relevant
ones according to the following rules:

• default.value £ M(S) => addresses of the form (<entity> S
default .value) are relevant

• inheritance € M(S) => addresses of the form (<entity> S)
are relevant

• drop.context € M(S) =>• addresses of the form (<entity> S)
are relevant

3. Partitions all possible query instances into classes. The classes
have the following property: the slots of all members of a class
are equal. For each problem class P whose members' slots equal
S generate from B(P) a predicate over inference methods M €
M(S) determining if M cannot successfully infer any element of
P. This predicate is denoted Fp(M).

To understand how this is done, consider the elements in B(PC(S))
for some S. If for all b € B(PC(S)), left(b) has no specializations,
then the inherits method will always be unsuccessful for PC(S)
- i.e., FPCiS\(inherits) equals true. Similarly, if for all b G B,
right(b) T^ default.value, the default.value method will never be
successfully applied, and Fpc ^{default.value) = true.

ISM uses a more sophisticated form of this idea. In the previous
illustration, the problem classes were defined at a coarse grain.
The actual ISM algorithm defines smaller problem classes, which
can lead to more inference search pruning. The problem classes
are defined to have the following properties:

72

• All members of a class have equal effective address lengths

• The slots of the effective addresses of all members of a class
are equal.

where the effective address of a problem instance (xl x2...xM xN)
is defined as (xl x2...xM) if xN = default.value, and (xl x2...xMxN)
otherwise.

For such a problem class P whose members have slot S and effec-
tive address length L, B(P) = B(S) A P- The unsuccessful method
predicates are defined as follows:

Up(inherits)
true if V6 e B(P),left(b) has no

specializations
false otherwise

Up(de fault, value)
false if 36 e B(P) such that

rightib) = default.value
true otherwise

Up(dr op.context) = <

false if 3 problem class P' whose members'
slots equal S and whose members'
effective address lengths equal I,
0 < / < £, such that FP,(M) = false
for some M, where M G
{inherits, default.value, drop.context}.

true otherwise

At run-time: Assume Theo is attempting to infer an answer for a problem
instance that belongs to problem class P, by applying method M. If
Fp(M) = true, M is not applied to the problem instance.

73

5.7 An Example

Consider the following knowledge base:

(height *novalue*

(generalizations (slot)))

(physobj *novalue*

(generalizations (root)))

(rectangle *novalue*

(generalizations (physobj)))

(square *novalue*
(generalizations (rectangle)))

(whentocache *novalue*
(generalizations (theoslotslot))
(default.value caching.on)
(methods (drop.context inherits default.value)))

Assume Theo must infer the value of (square height whentocache). Hence,
S = whentocache. Prior to run-time, with S = whentocache, ISM:

1. Determines that M(whentocache) = (whentocache methods) = (drop.context in-
herits default .value)

2. Finds that B(S) = {(whentocache default .value)}

3. Constructs a frame representing the successful and unsuccessful meth-
ods of each problem class associated with the whentocache slot. See
Figure 5.3. This frame states that default.value is useful for addresses
of length 2, implying that drop.context is useful for whentocache prob-
lem classes with address lengths greater than 2. The frame also states
that inheritance is not useful for addresses of length 2. In this repre-
sentation, inheritance and default.value are taken to not be useful for
problem classes that are not listed in the frame.

74

(successful-methods *novalue*

(whentocache *novalue*

(2 *novalue*

(default.value? t)

(inheritance? nil)))

Figure 5.3: Useful and Useless Methods for Height

An Inference Trace

Below is an abridged sequence and description of inferences resulting from
the (square height whentocache) inference using ISM's optimization algo-
rithm. The first number on each line indicates the Theo inference recursion
level. This number is followed by a caret. A forward caret > indicates the
initiation of an inference, which is followed by the inference instance ad-
dress. A backward caret < indicates the conclusion of an inference, which
is followed by the inference result. Comments are preceeded by semicolons.

;; top-level inference
1> (square height whentocache)
;; Theo determines how to infer the top-level query
2> (square height whentocache methods)
;; inference methods are returned
2< (drop.context inherits default.value)
;; Theo tries the first method
2> (square height whentocache drop.context)

;; ISM algorithm is invoked, drop.context is found to be useful
;; for the query and a recursive query instance is generated
3> (height whentocache)

;; As before, methods are inferred
4> (height whentocache methods)
4< (drop.context inherits default.value)
;; Theo tries the first method on the recursive query
4> (height whentocache drop.context)
;; ISM algorithm is invoked, drop.context found to be ***
;; unuseful for the query and it is terminated
4< *novalue*
:: Theo tries the second method

75

4> (height whentocache inherits)

;; ISM algorithm is invoked, inherits found to be ***

;; unuseful for the query and it is terminated

4< *novalue*

;; Theo tries the third method
4> (height whentocache default.value)

ISM algorithm is invoked, default.value found to be useful
for this query instance — whose effective address
equals (height whentocache). Recursive query is initiated
and Theo finds query's methods

5> (height whentocache default.value methods)
;; Methods are found
5< (inherits drop.context)
;; Theo tries first method
5> (height whentocache default.value inherits)
;; ISM algorithm is invoked, inherits found to be unuseful ***
5< *novalue*
;; Theo tries second method
5> (height whentocache default.value drop.context)

;; ISM algorithm is invoked, drop.context is applied
6> (whentocache default.value)
;; An answer is found and returned to the top level
6< caching.on

5< caching.on
4< caching.on

3< caching.on
2< caching.on

1< caching.on

In this trace, pruned search paths are denoted by ***. As the figure
shows, ISM is able to avoid three unsuccessful search paths. Because these
unsuccessful paths result in many inferences, the time savings resulting from
ISM is substantial. Using the ISM algorithm, the above inference takes 16
milliseconds. Without the algorithm, the inference takes 333 milliseconds.

5.8 Algorithm Limitations

This algorithm has several limitations.

76

• Most seriously, the algorithm must understand the methods being
used. Currently, only inheritance, drop-context and default-value are
understood. In particular, this algorithm does not handle the prolog
method, since prolog can utilize arbitrary rules. However, since this
algorithm is most useful for system slots, and system slots typically
only use the inheritance, drop.context and default.value methods, the
algorithm is still performs very well.

• As presented, the algorithm assumes that B(P) for all problem classes
P is stable. This insures that the pre-run-time knowledge base analysis
remains valid during runtime. In practice, this assumption can be
relaxed by inserting a monitor that senses changes to B(P). If B(P) is
modified, ISM can either:

1. Stop using the algorithm for this slot or

2. Recompute the unsuccessful methods for S

• Finally, the algorithm assumes that the methods for all the members
of a problem class P (whose slots are S) are equal to the problem
instance (S methods). This tends to be true almost all of the time, so
this restriction is not too severe.

5.9 Summary

This chapter presented a knowledge-base analysis and inference technique
that combines architecture flexibility with inference efficiency. Moreover,
this scheme adapts to the requirements of the domain. Finally, a simple
experiment was conducted, giving some evidence of the effectiveness of this
technique.

77

Chapter 6

Managing ISM Overhead

6.1 The Problem

As described thus far, ISM makes good run-time speedup mechanism man-
agement decisions. However, overall system performance might not reflect
superior speedup management utilization. ISM's run-time overhead - the
time needed to calculate each speedup mechanism's utility and monitor for
relevant data - can swamp any speedup gained from intelligent utilization
of speedup mechanisms, despite the inexpensive nature of ISM's sensors and
utility estimates. Why is this?

The answer to this question lies with Theo's inference mechanism. Theo's
operation is such that high-level inferences require many sub-inferences.
Each sub-inference is fairly inexpensive and does not actually perform much
work. Therefore, Theo's lack of speed derives from the sheer number of
sub-inferences needed for a query, rather than any complicated processing
performed by Theo during each sub-inference. Recall, however, that ISM's
management strategy as described thus far requires ISM to monitor data
for, and calculate speedup mechanism utilities for every subinference. The
plethora of sub-inferences needed by Theo makes ISM overhead substantial.

To be effective, a speedup mechanism manager such as ISM must not
only make intelligent management decisions, but must also minimize its own
cost. This chapter describes two strategies by which ISM reduces its sensing
and utility calculation overhead: adaptive sensing and phasic sensing.

78

6.2 Adaptive Sensing

One obvious idea for reducing ISM overhead is to monitor and compute util-
ities for only a subset of Theo's inferences. This is this idea behind ISM's
adaptive sensing strategy. An analysis of Theo's inference patterns shows
that a speedup mechanism application is only useful for a small percentage
of Theo inferences. Hence sensing and utility calculations can be restricted
to this set of inferences. Unfortunately, this set is dynamic and changes with
Theo's inference patterns. By observing these run-time patterns, ISM is able
to determine which query instances to monitor and adapt its monitoring to
the environment dynamics. This section describes the assumptions neces-
sary for this sensing strategy, their justifications, and ISM's actual adaptive
sensing techniques.

Adaptive Sensing Assumptions

In order to discuss the assumptions needed for ISM's adaptive sensing strat-
egy, it is necessary to define two terms. A query instance is novel if it has
not been queried in the past. Two query instances are similar if their ex-
planation structures overlap - if they have overlapping subproblems. The
more these explanation structures overlap, the higher their similarity level.
If a query instance is similar to a previous query, some portion of the work
needed to infer the current instance has been done during the inference of
the previous instance.

ISM's adaptive sensing strategy is based on the following three assump-
tions:

• Consider the entire set of inferences (and sub-inferences) conducted
by Theo for a particular domain. If an appropriate caching strategy
has been used, only a small percentage of the query instances in this
set has been queried multiple times.

• After a small number of top-level queries, almost all novel query in-
stances have a high level of similarity to at least one previous query
instance.

• Almost all query instance values in any Theo domain or knowledge-
base are stable.

79

Justifications

ISM's first assumption is based on the observation that of the inferences
resulting from a top-level query instance, relatively few of them are ground-
level inferences - most of them system-level inferences. Why is this? Theo
depends on system-level knowledge base information to guide its operation.
A large percentage of system-level query instances are very specific, rele-
vant to only one higher-level inference, reducing the likelihood that such
instances will be requeried. Such instances could only be requeried if they
were queried by the user, or if the higher-level inference was unstable. How-
ever, users virtually never query system-level instances - rarely are users
interested in the knowledge base "programming" that specifies Theo's op-
eration. Additionally, system-level values are generally very stable. Users
typically do not wish to modify the way the system operates. This further
lowers the chances that these kinds of instances would be requeried.

For example, consider the query instance (torn daughters fixedmethods).
This instance is useful only for inferring (torn daughters methods). If this
latter instance is cached, there is virtually no chance that (torn daughters
fixedmethods) will be requeried.

ISM's second assumption also derives from Theo's high level of system-
level inference. Theo depends heavily on system-level inference. In fact, in
the CAP domain described in the "Experimental Results" chapter, Theo
infers about 10 times more system-level slots than user-defined slots. This
means that on average, every inference of a user-defined query instance re-
sults in 10 system-defined query instances - i.e., the bulk of any inference
consists of system-level inference. System-level inferences rely heavily on
the inherits and drop.context methods. Many system-level query instances
"map" to identical addresses using these two methods. For example, both
(torn daughters fixedmethods) and (bob daughters fixedmethods) map to
(daughters fixedmethods) using drop.context, and (male daughters fixed-
methods) using inherits. These "convergent mappings" between query in-
stances implies a similarity between instances - (daughters fixedmethods)
and (male daughters fixedmethods) are overlapping subproblems for both
instances. Since generalization hierarchies and contexts are usually shallow,
there tends to be a high level level of similarity between novel system-level
instances and previous instances. Hence, similarities between current and
past query instances result from Theo's large percentage of system-level in-
ference and the convergent inference mappings that are typical for system-
level query instances.

80

As mentioned previously, users typically never modify system address
values because there is never a need to modify system behavior. Similarly,
Theo itself does not modify system address values. Hence, system-level
address values are very stable. Because system-level inference accounts for
about 90 percent of Theo inference, at least 90 percent of the values resulting
from Theo inference are stable, which justifies the third assumption.

Consequences

The three assumptions allow ISM to limit the number of query instances
to consider for speedup mechanism application, reducing the sensing and
utility calculations, and hence lowering ISM overhead. Why? Caching can
only be useful for repeated query instances. Therefore, the first assumption
posits that caching need be considered for only a subset of Theo's inferences,
since only a fraction of problem instances will ever be requeried.

The second and third assumptions imply that most novel inferences tend
to become less costly over time. According to the second assumption, af-
ter the system has run for some time, it becomes difficult to encounter a
novel query instance that is not similar to some past query instance. If the
subproblems of a novel query instance overlap with past subproblems and
the values of the overlapping subproblems are stable and have been cached,
these novel inferences have been partially solved. Since the third assumption
in fact posits the stability of most query instance values, as a consequence,
in general novel inferences become less costly to infer over time.

This conclusion is important with regard to managing BEBG and EBG.
It states that the caching speedup mechanism is powerful enough to increase
system efficiency for virtually all query instances, because of the overlapping
subproblem and stable subproblem value characteristics of queries. This sub-
stantially decreases the potential utility of EBG and BEBG - these speedup
mechanisms would be expected to be more useful if these characteristics
weren't true. Because caching has a potentially large negative effect on the
utility of EBG and BEBG, these mechanisms are presumably most useful in
situations under which caching is not a useful speedup mechanism - when
query instances values are unstable. Hence, in some sense, the latter two
assumptions provide a means by which ISM can be selective in choosing
which query instances to consider for EBG or BEBG.

These arguments show that ISM should consider only a subset of query
instances when making speedup mechanism management decisions. Theo-
retically, then, a strategy incorporating these arguments can reduce ISM's

81

overhead, but only if ISM can determine which query instances are most
appropriate for speedup mechanism application.

Overhead Management and Speedup Goals

The argument that EBG and BEBG need be considered for only a subset
of Theo's inferences may seem questionable. After all, even if caching is
expected to reduce the utility of EBG and BEBG, might these mechanisms
be useful regardless? Is it acceptable that ISM considers only some inferences
for EBG and BEBG based on a "hand-wavy" rationale?

Overhead management is intimately connected with the goals of ISM,
and so this question must be considered in the context of ISM's speedup
goals. ISM does not seek to make the optimal speedup mechanism man-
agement decisions. It seeks only to increase system performance relative
to Theo's default performance. This allows ISM to disregard the situations
under which speedup is possible, but unlikely. In some sense, ISM's speedup
goals allows it to be conservative in its management strategies.

6.2.1 Strategy

The previous sections have shown that caching, EBG, and BEBG need be
considered for application for only some query instances. Thus, ISM now has
the task of determining which instances are most appropriate to consider and
which to ignore. Because caching, EBG, and BEBG are most useful under
different situations, the criteria used to determine when these mechanisms
might lead to speedup are different for each mechanism. In this section,
these criteria are discussed.

Caching

The adaptive sensing strategy for caching views all query instances that
have a reasonable likelihood of being requeried as candidates for caching.
There are four situations under which there is a reasonable likelihood of this
happening for a query instance Q:

• Q is a top-level query. ISM assumes that any top-level query instance
can be requeried.

• Q has multiple dependents. This means Q's value is needed for multi-
ple higher-level inferences, so ISM assumes that future inferences may
need to infer the value of Q.

82

• Q has an unstable dependent. ISM assumes that <5's dependent D
might be requeried in the future. Because D's value cannot remain
cached (since it is unstable), when Theo attempts to infer D, Q will
be requeried.

• An expensive rule is being applied, causing Q to be inferred as a sub-
problem.

ISM calculates caching utilities and monitors data needed to calculate
these utilities for the query instances that satisfy any of these conditions.
This strategy is adaptive because the set of query instances for which ISM
must calculate utilities continually shifts. This means that determining these
conditions requires more sensors to be embedded into Theo. Unlike the
previously discussed sensors, these determine when ISM should be invoked,
and are called I-sensors. The monitors that collect data for ISM's utility
analyses that were discussed previously will be called D-sensors.

Note that ISM must invoke its caching I-sensors on every problem in-
stance to determine the instances on which the D-sensors should be used.
Hence, the adaptive sensing strategy trades off expensive D-sensing costs
with relatively inexpensive I-sensing costs. With this sensing strategy, ISM
avoids invoking the D-sensors. Unfortunately, because the D-sensing must
be adaptive, an additional "layer" of sensors - the I-sensors - must be added
to the system.

I-Sensors for Caching

ISM's I-sensors for caching are implemented as follows:

• Top-level query sensor: this determines whether a query instance is a
top-level query. At the beginning of every inference, the Theo stack,
which keeps track of all of Theo's recursive calls, is checked. If the
stack is empty, the inference is a top-level query and its address is
stored in a global variable.

• Multiple dependents sensor: this senses whether a problem instance
Q has multiple distinct dependents. This is monitored approximately
and indirectly. A fixed-size queue containing the last 100 query in-
stances is maintained by ISM. To check Q for multiple dependents,
ISM searches the queue for instances of Q, and for each instance, re-
turns its "predecessors" in the queue. Usually this predecessor repre-

83

sents an inference resulting in (Q's query. If there are multiple distinct
"predecessors," Q is assumed to have multiple dependents.

• Unstable address sensor: this senses if a query instance has ever been
unstable in the past. ISM saves the value of every novel query instance
in the knowledge base. If the query instance is repeated in the future,
the answer is compared to its original value. If it has changed, this
instance is tagged as unstable.

• Unstable dependent sensor: this determines if a dependent of a query
instance Q is unstable. ISM finds Q's dependent by looking at the
Theo stack, then checks if it is unstable using the unstable address
sensor.

• Expensive rule application sensor: rules are applied by Theo's prolog
rule interpreter. Expensive rules can be determined by their syntactic
form. Whenever the interpreter attempts to apply an expensive rule,
a flag is set.

ISM's multiple dependents sensor is approximate - it is not always ac-
curate. Note that using the dependents system slot to monitor for this
information does not work; the dependents slot of a query instance Q saves
information only if Q is cached. Also, ISM's sensing scheme is more space-
efficient than monitoring dependents directly. Furthermore, the sensor's
failure modes are not very harmful. If it errs by returning spurious depen-
dents, this will result in a loss of efficiency, but a negligible one as long as it
does not err frequently. Although the fixed-size queue can make this sensor
disregard some dependents, ISM assumes that only recent inference pat-
terns are significant, which allows ISM's behavior to shift with architecture
environment dynamics.

EBG

As discussed earlier, due to the high D-sensing costs associated with EBG
as well as ISM's speedup goals, ISM considers using EBG on only a subset
of the problem instances for which the mechanism could be useful. However,
the subset that is considered contains the problem instances for which the
mechanism is the most useful.

ISM considers EBG potentially useful for a problem instance Q if:

• Q is unstable and

84

• Either Q is a top-level query

• Or \queries(slot(Q))\ > threshold

As for caching, if a problem instance satisfies the above criteria, ISM's
EBG D-sensors are applied.

ISM's threshold criterion allows ISM time to make caching decisions,
and time for these decisions to take effect before EBG is considered.

EBG I-Sensors

ISM requires the following I-sensors for EBG:

• Unstable address sensor: described earlier.

Top-Level query sensor: described earlier. •

• Slot-level query count sensor: keeps a running count for each slot 5 of
the number of queries Theo has inferred whose slots equal S.

BEBG

BEBG can be applied only to an existing learned rule. Because EBG is
rarely invoked, not many rules are generated, and in general, their usage
rate is low. Furthermore, the sensors required to calculate BEBG utility are
relatively low-cost. Hence, there is no need to implement adaptive sensing
for BEBG.

Sensor Trade-Offs

What does adaptive sensing give us? Using adaptive sensing, ISM is able to
reduce D-sensing at the cost of I-sensing. However, it is clear that although
ISM can reduce the amount of D-sensing needed, it cannot eliminate it
entirely for any query instance. For example, Costinf() is needed for only
some query instances, but InfStructs must be calculated for every query
instance so that InfStructMatches may be calculated correctly. What
exactly are the sensor tradeoffs?

Figure 6.1 shows the sensing and utility calculation responsibilities of
ISM with and without adaptive sensing. Because BEBG utility is calculated
so infrequently, it, along with its sensors, have not been associated with
either full or adaptive sensing. In general, with adaptive sensing, the sensors
whose data can affect the utility of other query instances must always be
used.

85

Not Adaptive Adaptive
every query every query selected queries

'-'cache

UEBG

UBEBG

X

X

X

X

Probstahie
Costinj
C[£(A)]

X

X

X

X

X

X

Inf Struct
\Inf StructM atches]
\queries(..)\
\queries(slot(..))\

X

X

X

X

X

X

X

X

Successes^..)
ExpVarHistory(..)
\ExpVarMatches(..)\

TopLevelQuery
MultipleDep endents
UnstableAddress
UnstableDependent

X

X

X

X

Figure 6.1: ISM With and Without Adaptive Sensing

86

6.3 Phasic Sensing

ISM uses another strategy to reduce its sensing overhead. In this strategy,
sensing is carried out in phases. The basic idea is as follows:

Decision Phase: ISM operates as described above, and attempts to gen-
eralize some of its management decisions under some conditions - i.e.,
make decisions that effect sets of problem instances as well as individ-
ual problem instances. ISM's generalization strategies are discussed
later in this section.

Error-Detection Phase: ISM stops actively managing speedup mecha-
nisms and relies on its previously determined strategy to manage the
speedup mechanisms, reducing overhead as well as adaptivity. To en-
sure some adaptivity, however, ISM begins to monitor for consequential
management decision errors. If enough such errors are detected, ISM
falls back to Decision Phase operation.

A management decision error is an incorrect management decision that
reduces architecture performance relative to optimal speedup mechanism
management (with ISM's speedup goals). A caching decision error is such
an error that ISM has made with the caching speedup mechanism. A con-
sequential error is an incorrect management decision that reduces architec-
ture performance relative to Theo's default management strategy. Recall
that Theo, by default, caches the values of all problem instances and never
invokes EBG or BEBG. If ISM decides to cache a value that should not
have been cached, this error is not consequential - relative to default Theo,
ISM has not hurt the architecture's performance. On the other hand, if ISM
uncaches a value that should have been cached, it has committed a conse-
quential error. More precisely, it has committed a consequential caching
error.

The error-detection phase requires less overhead than the decision phase
for several reasons. First, ISM does not need to calculate any utilities in this
phase. Second, mismanagement detection requires less monitoring than ac-
tive speedup mechanism management. Finally, in the error-detection phase
ISM is concerned with only a subset of the query instances that the decision
phase handles - the instances for which ISM may have made consequential
errors.

For phasic sensing to be effective, the architecture environment must
be "quasi-stable." The dynamics of the environment must change slowly
enough that:

87

• ISM can initiate its error-detection phase

• ISM's management strategy developed from the decision phase remains
a reasonable strategy during the error-detection phase

Obviously, quasi-stability is a function of the architecture's domain and
environment, and cannot be guaranteed. However, this sensing strategy can
take advantage of a quasi-stable environment. If the environment is too
dynamic for this strategy, ISM remains in the decision phase. Hence this
strategy never compromises ISM's management decisions.

In the rest of this section, phasic sensing is described in detail for each
speedup mechanism.

6.3.1 Caching

Decision Phase

In addition to making address-level caching decisions, ISM maintains slot-
level data about the percentage and number of times addresses with that
slot have been cached by ISM. When ISM enters the error-detection phase,
it uses this data to make slot-level caching management decisions.

ISM enters the error-detection phase for caching if ISM's caching error
rate (caching decision errors / number of query instances) falls below a
particular threshold, and Theo has inferred a considerable number of top-
level queries. At this point, ISM assumes the environment is stable enough,
ISM's caching management decisions are good enough, and ISM has had
enough experience that active management is no longer needed.

Error-Detection Phase

During this phase, ISM continues to use the address-level caching decisions
developed in the previous phase, but uses an additional, more general slot-
level caching scheme. If the caching-percentage and caching-number of a
slot exceeds a particular threshold, all addresses having that slot that have
not been "explicitly uncached are cached.

ISM also monitors the consequential caching errors. If the rate of errors is
greater than a threshold, ISM reinitiates decision-phase sensing to cut down
on ISM mistakes. There is only one consequential error associated with
caching: when ISM uncaches a value that should have been cached. ISM
monitors for this situation using the recent answer history datastructure
used to calculate Probstabie- If the two most recent values are identical, ISM

has made a consequential error. Any query instance for which caching has
been turned off is monitored in this way.

For caching, the error-detection phase requires much less overhead than
the decision phase. The only sensor needed is the modified Probstabie sensor
mentioned above. It is active only for selected query instances - those for
which their whentocache slot equals caching.off, which is easy and inexpen-
sive to determine.

6.3.2 EBG and BEBG

Decision Phase

Because the cost of invoking EBG and BEBG is so high, no generalized
decisions regarding their invocation are made by ISM - an incorrect decision
would be too costly. However, since the sensing, rule application, and rule
retrieval costs associated with EBG can be quite costly, ISM has the option
of eliminating EBG as a speedup mechanism. As discussed in the EBG
utility section, ISM can eliminate specific rules. In addition, ISM can make
the following decisions:

Eliminate EBG: if EBG has not been applied in N top-level queries, ISM
assumes that the overhead associated with it outweighs its potential
benefits, and removes it from consideration as speedup mechanism.

Eliminate all rules: if no learned rules have been successfully applied for
N top-level queries, ISM assumes that the rule retrieval and appli-
cation costs outweigh the benefits of the rules, and sets a flag that
prevents Theo from attempting to retrieve any learned rules.

The sensors required by ISM for these decisions are relatively simple and
inexpensive.

ISM enters the error-detection phase after the number of top-level queries
that ISM has inferred is greater than some threshold. ISM presumes that
at this point, ISM has observed Theo's operation for long enough that, had
any EBG rule been useful, it would have been generated.

Error-Detection Phase

In this phase, ISM simply continues to use the rules generated by EBG and
BEBG in the decision phase. At this point, EBG is no longer considered
for use - EBG is essentially turned off. ISM assumes that had EBG been

89

useful, it would have been invoked in the decision phase. Because Theo, by
default, never uses EBG, ISM cannot commit any consequential errors by
killing EBG. Consequently, no EBG sensing is needed for this phase, and
furthermore, ISM cannot apply EBG in the future. Although this behav-
ior can be very non-optimal in domains with particular characteristics, in
natural domains, such as the CAP and Mail-Notification domains used for
testing the system, this strategy works well.

However, because the BEBG sensors are very inexpensive, ISM's man-
agement of BEBG does not change from the decision phase to the error-
detection phase. That is, ISM continues to monitor the variable instan-
tiations of successful expensive rule applications, instantiating expensive
variable values if necessary - ISM does not turn BEBG off.

6.4 Adaptive Sensing and Phasic Sensing

Two overhead-reducing strategies have presented. ISM actually uses a com-
bination of both techniques; ISM uses phasic sensing with the following
modification: the decision phase uses adaptive sensing. Figure 6.2 shows
the sensors needed by ISM for its sensing strategy. The combination of
these sensing strategies are summarized for each speedup mechanism in this
section.

6.4.1 Caching

Decision Phase

In this phase, ISM fully monitors and computes the caching utility of any
query instance Q that satisfies any of the following criteria:

•

•

•

Q is a top-level query

Q has multiple distinct dependents

Q has an unstable dependent

An expensive rule is being applied, causing Q to be inferred as a sub-
problem.

To determine when a query instance satisfies any of these criteria, ISM
invokes the following sensors on every query instance:

• TopLevelQuery

90

Decision Phase Error-Detection
every Q selected Qs selected Qs

U cache X

UEBG X

Probstable X X

CoStinf X

C[£(A)} X

Inf Struct X

\InfStructMatches\ X

\queries(..)\ X

\queries(slot(..))\ X

TopLevelQuery X

MultipleDependents X

UnstableAddress X

UnstableDependent X

CachingErrorRate X X

CachingSlotLevelStats X

EB G ApplicationRate X

RuleApplicationRate X X

Figure 6.2: ISM With Adaptive and Phasic Sensing

91

• MultipleDependents

• UnstableDependent

• ExpensiveRuleApp

If a query instance satisfies one of these criteria, ISM invokes the fol-
lowing sensors on the instance, which are needed to calculate its caching
utility:

• Ucache

• Probstabie

• Costinf

• £[£(*)]

Whenever ISM considers caching the value of a query instance, two ad-
ditional sensors are invoked:

• CachingErrorRate

• CachingSlotLevelStats

The first of these sensors enables ISM to determine when its caching deci-
sions are accurate enough that ISM can begin utilizing the error-detection
sensing strategy, reducing ISM overhead. The second of these sensors en-
ables ISM to make slot-level caching management decisions.

Error-Detection Phase

During this phase, ISM monitors for consequential caching errors on the
query instance values that it had previous decided not to cache. To do this,
ISM requires the following sensors:

• Probstabie

• CachingErrorRate

92

Phase Transition Criteria

ISM moves from the adaptive sensing phase to the error-detection sensing
phase when Caching Err or Rate < 1/25 and Theo has inferred more than
20 top-level queries.

Once ISM is in the error-detection sensing phase, it reverts to adaptive
sensing if Caching Error Rate > 1/18.

These numbers have been empirically determined using the CAP and
MN domains described later.

6.4.2 EBG

Decision Phase

ISM invokes the following sensors on every query instance Q to determine
whether it should consider applying EBG to Q:

• UnstableAddr

• TopLevelQuery

• \queries(slot(..))\

In addition, for ISM to correctly determine EBG utility, ISM needs the
ability to determine the inference structures of any query. Hence, ISM also
applies this sensor on every query instance:

• InfStruct

When ISM decides to calculate the utility of EBG on selected query
instances, the following sensors are invoked:

• \InfStructMatches(..)\

• \queries(..)\

In addition, ISM requires sensors to determine whether EBG should be
eliminated as a speedup mechanism. This requires

• EBGApplicationRate

Finally, to determine when EBG sensing should move out of the decision
phase, ISM uses

• TopLevelQueryCount

93

Error-Detection Phase

Once EBG sensing moves out of the decision phase, EBG is no longer consid-
ered for application for any query instance. Hence, in this phase, no sensing
is required.

Phase Transition Criteria

ISM's EBG management moves out of the decision phase when TopLevelQueryC'ount >
20. This number has been empirically determined.

6.4.3 BEBG

Decision Phase

BEBG is only available as a speedup mechanism when an EBG rule has been
applied, which is very infrequent. Hence, sensing costs for BEBG are low,
and BEBG does not require adaptive sensing. Hence, the following BEBG
sensor is called every time an expensive EBG rule is applied:

• ExpensiveRuleApp

In addition, ISM can eliminate the use of learned rules, if the rule appli-
cation overhead is deemed too expensive. To gather the data necessary to
make such a decision, ISM uses this sensor every time a learned rule is used:

• RuleSuccessRate

Error-Detection Phase and Phase Transition Criteria

Because BEBG sensors are relatively inexpensive, and because they are in-
voked so infrequently, there is no need to minimize BEBG sensing with an
error-detection phase.

6.5 Overhead Management Performance

This section uses data gathered from the CAP domain experiments (de-
scribed in the "Experimental Results" chapter) to demonstrate the overhead
associated with the following three sensing strategies:

• Full sensing: monitor every query instance

94

Sensor seconds x 10,000

U cache 7.8

UEBG 12.3

Probable 3.8
C0Stinf 7.3
C[€(A)} 3.3

Inf Struct 7.7
| InfStr uct Matches \ 4.2
\queries(..)\ 6.2
\queries(slot(..))\ 6.2

TopLevelQuery 3.5
MultipleDep endents 4.0
Unstable Addr 3.5
UnstableDependent 5.2

CachingErrorRate 5.5
CachingSlotLevelStats 6.5
EB G ApplicationRate 3.4
RuleApplicationRate 3.4

Figure 6.3: ISM Sensor Time Costs (seconds x 10,000)

• Adaptive sensing

• Adaptive and Phasic sensing

The decision quality and effect on overall system performance of each of
these strategies is also examined.

6.5.1 Overhead Calculations

Figure 6.3 shows the time needed to operate each of ISM's sensors 10,000
times.

For the monitors needed by the full-sensing monitoring strategy, ISM
generates an overhead of 58.8 seconds for every 10,000 inferences.

In the CAP domain, using the adaptive sensing strategy, ISM invokes its
D-sensors only about 6 times for every 1,000 inferences - .6% of the time. If

95

Strategy overhead
FuU
Adaptive
Adaptive/Phasic

58.8
30.6

between 12.7 and 30.8

Figure 6.4: ISM Overhead per Inference

we conservatively assume D-sensor invocation for 1% of all inferences, ISM
generates an overhead of 30.6 seconds for every 10,000 inferences. Adaptive
sensing reduces ISM overhead by close to a factor of two.

With both adaptive and phasic sensing, ISM's overhead is reduced even
further. Decision-phase sensing generates an overhead of 30.8 seconds for
every 10,000 inferences - an overhead similar to that of adaptive sensing. As
ISM's sensing strategy moves to the Error-Detection phase, however, over-
head falls to 12.7 seconds per 10,000 inferences, even under the assumption
that every inference requires the application of the all the sensors associated
with the error-detection phase. Hence, for any domain, adaptive/phasic
sensing will incur a conservative overhead estimate of between 12.7 and 30.8
seconds per 10,000 inferences. In the CAP domain, once ISM begins us-
ing the Error-Detection phase sensing, it never falls back to Decision phase
sensing. Hence, as CAP continues to run, ISM's overhead approaches a
maximum of only 12.7 seconds per 10,000 inferences.

Figure 6.4 summarizes the overheads associated with each strategy.

6.5.2 Performance

Although ISM's overhead management strategy does reduce ISM overhead
significantly, what effect does this strategy have on ISM's decision quality?
Does adaptive and phasic sensing actually give ISM enough information to
work well?

To examine the effect of overhead management strategies on speedup
mechanism management decision quality, ISM was run on the CAP domain
(which is described in the Experimental Results chapter of this thesis), with
ISM managing caching only. Three overhead management strategies were
tested:

• Full Sensing: caching considered for every query instance

• Adaptive

96

Strategy Number of Decisions
Full
Adaptive
ISM

2,557
556
349

Figure 6.5: Overhead Management Schemes versus Caching Decision Count

Strategy Performance (seconds)
Full
Adaptive
ISM

180.5
156.1
122.8

Figure 6.6: Overhead Management Schemes versus Performance

• ISM: Phasic/Adaptive

The results of this experiment are summarized in Figures 6.5 and 6.6, which
show the number of management decisions carried out by ISM using each
strategy, and the architecture performance (in seconds) using each strategy,
respectively.

It is clear that full sensing results in many more decisions than either
the ISM or adaptive strategy. This is to be expected: adaptive sensing
causes ISM to implicitly not cache many query instances that full sensing
explicitly does not cache. The performance data shows that adaptive sensing
results in a more efficient system than full sensing. Hence, the strategy of
considering speedup mechanisms for only some query instances is successful:
the system, using adaptive sensing, takes only 86 percent of the time needed
by the full-sensing system.

The figures also show that ISM's strategy results in fewer decisions than
the adaptive strategy. This results from the error-detection phase strategy,
as well as ISM's slot-level management decisions. The speedup gained com-
bining adaptive and phasic sensing is dramatic: the system, using ISM's
strategy, shows a 33 percent speedup over the system using the full-sensing
strategy.

This experiment shows that ISM's management ability is not decreased
by the overhead management schemes presented, and that these schemes can
have a significant effect on the efficiency of a speedup mechanism manager
such as ISM.

97

Overhead Management Strategy Disadvantages

ISM's overhead management scheme works very well for the CAP domain.
Can we expect adaptive and adaptive/phasic sensing to always perform well
relative to full sensing? Are there any drawbacks to these strategies?

Relative to full sensing, adaptive sensing can cause ISM to converge more
slowly to a good speedup mechanism management strategy. It can take time
for the adaptive sensing strategy to realize that a speedup mechanism should
have been applied to a particular query instance. For example, consider a
query instance Q that has a single stable dependent. With adaptive sensing,
ISM will not consider caching Q. However, with full sensing, caching is
considered, and may be invoked. Assume that Theo is asked to invoke
another query instance that uses Q's value. With full sensing, Q's value
may have been cached. With adaptive sensing, (Q's value will be cached after
the second query (because of the MultipleDependents I-sensor) - but time
has already been lost relative to the full-sensing scheme. Hence, compared
to full sensing, adaptive sensing can cause ISM to find good management
strategies more slowly.

This is not usually a problem. As the experimental results show, gener-
ally, slow convergence is a transient phenomenon; after an initial "training
period," management decision quality using adaptive sensing matches that
using full sensing.

Because phasic/adaptive sensing uses adaptive sensing, it has the same
potential slow-convergence characteristic. However, there is a more seri-
ous problem with phasic/adaptive sensing. This kind of overhead control
makes powerful assumptions about the characteristics of the domain. As
discussed previously, the domain must be quasi-stable. In particular, the
fact that EBG can be turned off is potentially a big problem. Domains can
be constructed such that EBG is not useful until the system has run, say,
50 top-level queries. With full sensing, EBG can still be invoked. With
phasic/adaptive sensing, EBG would not be available.

Although this is a possible scenario, natural domains do not seem to
exhibit these kinds of radically-changing characteristics. Hence, in practice,
phasic/adaptive sensing results in very good performance.

98

Chapter 7

Experimental Results

This chapter describes the domains used to test ISM's performance, and
presents the experimental results.

7.1 Test Domains

ISM's performance has been tested in two of Theo's domains: the Calendar
Apprentice domain and the Mail Notification domain. In this section, these
domains are described.

7.1.1 Calendar Apprentice

The Calendar Apprentice, or CAP [Mitchell 94], is an interactive learning
apprentice for calendar management built on top of Theo. The goal of CAP
is to assist the user in scheduling meetings. From the user's perspective,
scheduling a meeting involves determining information such as when and
where the meeting should be held. CAP helps the user determine this infor-
mation. Specifically, CAP provides advice regarding the following aspects
of scheduling meetings:

• What date and time should the meeting be scheduled?

• How long should the meeting last?

• Where should the meeting be held?

CAP learns to give reasonable advice by observing scheduling decisions made
by the calendar owner, using them as training examples. Learning generates
rules which CAP uses, providing advice tailored to the calendar owner.

99

The Program

CAP provides an interactive editor that the calendar owner uses to manage
meetings. It supports the following actions:

• Create a meeting

• Move a meeting

• Modify some information about a meeting

• Delete a meeting

• Copy a meeting to another time/day

• Add a person to the database

• Confirm a meeting by sending the attendees e-mail

This interface gives CAP the ability to observe the user's actions, essentially
generating training examples, and also gives CAP a way to provide advice.

Whenever the user invokes an action, the interface prompts him for infor-
mation needed to carry out the action. For example, add-meeting requires
data such as attendees, date, duration, start-time, and location. At each
prompt, CAP presents its best guess as to what the value should be to the
user.

CAP and Theo

As mentioned earlier, CAP is implemented on top of Theo. Theo provides
the following:

• a frame-based representation for CAP's knowledge base

• inference methods for generating advice to the user

• learning methods for CAP

CAP's knowledge base consists of the current calendar state, approximately
250 people and groups known to the calendar owner (including information
relevant to them, such as position, department, office, e-mail address), and
inference rules for generating advice.

This domain is a useful testbed for ISM for several reasons. Firstly, it
is a real-world domain, with real data and realistic distributions of queries
and knowledge base updates. Secondly, because CAP must interact with
the calendar owner, speed is important; users like fast response.

100

7.1.2 E-Mail Notification

Often, a user receives such a large volume of e-mail that he cannot read any
of it in a timely fashion. This can be a problem if important mail requires
immediate attention. In such a situation, it would be useful if the user were
notified upon the arrival of important mail.

The E-Mail Notification domain, or MN, consists of an application that
notifies the user when "important" mail has arrived; a piece of mail is con-
sidered important if its author has a meeting with the user later in the
day. This application is useful because often such mail contains information
pertinent to the upcoming appointment that the user should be aware of.

MN Domain Theory

This domain is implemented in Theo, and interfaces with CAP's knowledge
base, the system clock, and the user's mail queue. To operate, MN requires
the following information:

• Subsequent meeting attendees: people with whom the user will meet
later today

• Current mail authors: authors of the e-mail in the user's mail queue

Obviously, this information must be constantly updated for MN to work
correctly.

To determine the subsequent meeting attendees, MN uses CAP to de-
termine the user's scheduled meetings for the current date. Those meetings
that have started prior to the current time are filtered out. The attendees
of the remaining meetings are inferred and collected.

To determine the current mail authors, MN simply examines the from
field of each piece of mail in the user's mail queue.

If any elements in the set of subsequent meeting attendees is also an
element in the set of current mail authors, a flag notifying the user is set.

MN's domain theory is:

important-mail?(x) -:
current-mailspooKx, m),
remaining-meeting-attendees(x, a) ,
intersection(m, a, r)
not(empty(r))

101

remaining-meeting-attendees(x, a) :-

remaining-meetings(x, m),

attendees(m, a)

remaining-meetings(x, m) :-

current-time(t),

current-date(d),

events(d, m),

event-type(d, 'meeting),

start-time(m, s),

s >= t

7.2 Domain Characteristics

The effectiveness of a system such as ISM is heavily influenced by the char-
acteristics of the domain that the system is executing. These characteristics
are:

Knowledge Stability: does knowledge base data stay constant, or are val-
ues constantly changing?

Query Distribution: are query instances repeated, or are most query in-
stances novel?

Inference Structure Distribution: does a large fraction of inferences share
similar inference structures?

Amount of Meta-level Inference: do user-level inferences necessitate very
much system-level inference?

Inference Complexity: how complicated are the inferences?

The CAP and MN domains have very different characteristics, and hence
are good test domains for ISM. In this section, the characteristics of these
domains are discussed, as well as their effect on ISM's performance.

7.2.1 CAP

The CAP domain is highly stable; information in its knowledge base rarely
needs to change. For instance, data relevant to each person in the knowledge
base, such as position and office, will almost never need to be modified.

102

Consequently, there is essentially no expected TMS costs associated with
caching in this domain, only space costs. Because space costs are presumed
to be minor, Theo's default caching strategy - cache everything - can be
expected to work quite well. Hence, ISM's caching strategy is not expected
to provide much speedup leverage. That is, ISM's caching strategy may
increase efficiency, but only due to the second-order effects of more efficient
space utilization; the more important truth-maintenance costs associated
with caching will not be observed in this domain.

Furthermore, CAP's query distribution is relatively uniform. In general,
this means that the inferences required by CAP have relatively widely vary-
ing inference structures. EBG and BEBG are useful only for inferences with
similar structures, and consequently, EBG and BEBG are not expected to
be useful in this domain. Once again, this means that Theo's default in-
vocation strategy for EBG and BEBG (never use either) are very close to
optimal, nullifying any potential speedup associated with ISM's intelligent
management of these mechanisms.

Because Theo's default use of speedup mechanisms is well-suited for the
CAP domain, CAP provides a good test for ISM's sensing control strat-
egy. Even with an effective management strategy, ISM cannot gain a large
speedup advantage over Theo. Hence, in this domain, it is imperative that
ISM's sensing and control overhead is minimized to ensure that Theo's per-
formance does not degrade. This effect is magnified because CAP's domain
characteristics are very stable; the adaptivity of ISM - and the sensing
needed to support that adaptivity - is essentially wasted.

On the other hand, the inferences required by CAP are relatively com-
plicated, as evidenced by the rather lengthy times needed for each inference.
This implies that CAP requires many system slot inferences. Presumably,
ISM's load-time optimization applies to many of these inferences, and the
speedup gained from ISM's load-time optimization should be significant.

7.2.2 MN

In many ways, MN's characteristics are diametrically opposed to those of
CAP. In the MN domain, information (such as the user mail queue and
the user's remaining meetings) is constantly changing. I.e., much of the
knowledge is dynamic. In this situation, Theo's default caching strategy
works poorly - much cached information will need to be uncached, leading
to a high TMS cost. Hence, ISM's adaptive caching strategy should provide
a large speedup.

103

Furthermore, the MN domain specifies that the same inferences are re-
peatedly requeried - the query distribution is very spiky. Obviously, this
means that many inferences have identical structures, making EBG and
BEBG potentially very useful. The MN domain, however, contains "expen-
sive" prolog rules, which will result in expensive learned EBG rules, limiting
somewhat the utility of EBG. BEBG, however, should provide a dramatic
speedup.

One of the interesting characteristics of MN is that data in the knowl-
edge base change at different rates. That is, the level of stability in the
knowledge base is subject to change. For example, for a time the user's
mail queue may be very stable. Then it may change continually for a period
of time. For ISM to maximize system efficiency, it must be able to adapt
its management strategies over time, according to these different levels of
"dynamicity." Because of this, as well as the dynamic nature of MN and its
"spiky" query distribution, MN tests the effectiveness of ISM's management
choices and its ability to adapt to changing circumstances.

The inferences in the MN domain, unlike those for CAP, are relatively
simple. Furthermore, because of MN's spiky query distribution, system-slot
queries are highly repetitive. After these slots are cached, essentially all
system slots will be inferred instantaneously. Consequently, the speedup
potential of ISM's load-time optimization is very low, limited to only the
initial system slot queries. In contrast, consider CAP. Because of CAP's
uniform query distribution, Theo must always infer new system slots - slots
for which values have not yet been cached. Inferring such slots requires
search through the knowledge base - the situation for which ISM's load-
time optimization is useful.

7.3 Experimental Results

The following methodology was used for running tests on the CAP and
MN domains: a fixed sequence of queries was inferred on several different
"systems". These systems consisted of

• Theo

• ISM() - Theo using ISM's load-time optimizations only

• ISM(cache) - Theo using ISM's load-time optimizations and caching
control

104

• ISM(cache, EBG) - Theo using ISM's load-time optimizations with
caching and EBG control

• ISM(cache, EBG, BEBG) - Theo using ISM's load-time optimizations
with caching, EBG and BEBG control

The experiments were conducted in this incremental fashion to better under-
stand the effects of each speedup mechanism, and to analyze ISM's effective-
ness at handling different combinations of mechanisms. The data resulting
from these experiments are summarized below.

For the CAP experiments, two sequences of CAP operations were exe-
cuted. One sequence was recorded from Tom Mitchell's calendar in 1992. It
contains 275 operations, consisting of:

• 59 Add-event actions

• 26 Modify-event actions

• 32 Move-event actions

• 105 Copy-event actions

• 53 Delete-event actions

Running these actions results in almost 163,000 Theo inferences, as shown
in Figure 7.1.

The other sequence was recorded from Matt Mason's calendar in 1994.
It contains 265 operations, consisting of:

• 61 Add-event actions

• 44 Modify-event actions

• 30 Move-event actions

• 96 Copy-event actions

• 15 Delete-event actions

• 15 Add-person actions

• 4 Confirm-event actions

105

Running these actions results in over 201,000 Theo inferences, as shown in
Figure 7.2.

The MN experiments consist of 60 repeated top-level inferences, running
three days, and results in about 63,000 Theo inferences, as Figure 7.3 shows.
Each top-level query determines if the user has received any important mail,
and there are 20 top-level queries per day. Time is updated between queries.
The sequence of mail-queue updates, date and time updates, and calendar
actions results in a positive response from MN only after queries 2, 5, 9, 10
and 13.

7.3.1 CAP Experiments

In Figures 7.4 and 7.5, Theo is run with and without ISM's load-time op-
timization technique. ISM() has negligible effect. Why is this the case?
During Theo's evolution, performance requirements necessitated compro-
mising some of Theo's design principles. In particular, inference flexibility
for some system slots was sacrificed for efficiency. Inference for query in-
stances with these system slots is abridged. Consider a query instance Q
with the following address: (a b c.y z). If z is a system slot for which Theo
abridges inferences, Q is inferred by inferring the address (y z).

ISM's load-time optimizations operate on a subset of Theo's system slots.
Unfortunately, for this experiment, the inferences for these slots have been
"pre-optimized" already by Theo, using the abridged inference optimiza-
tion technique described above. Hence, ISM's load-time optimization is not
effective in this situation.

Note an interesting feature in this graphs: sudden large jumps in elapsed
time. These jumps result from global garbage-collects performed by Lisp.

One way to test ISM's static optimization technique would be compare
its performance to Theo, with Theo's built-in optimization disabled. Unfor-
tunately, this makes Theo unusably slow. Instead, to get some measure of
the usefulness of ISM's load-time optimization, ISM is extended to addition-
ally optimize the whentocache slot (for only the following experiment). The
resulting performance is depicted in Figure 7.6 and Figure 7.7. ISM(), when
extended to handle just one additional slot, increases system performance
by a factor of about 2.3. Clearly, ISM's load-time optimization technique
is very effective for this domain. Note that ISM's static optimization saves
space; in this runs, no global garbage collects are needed. Essentially, since
ISM() prunes unsuccessful inferences, the space spent otherwise caching the
values, explanations, and dependents of these inferences is saved.

106

Total Inferences x 10

170.00

3

0.00 50.00 100.00 150.00 200.00 250.00
Top-level Inferences

Figure 7.1: Cumulative Number of Theo Inferences versus Number of Top-
Level CAP Operations for Mitchell's Calendar

107

Total Inferences x

210.00

200.00

190.00

180.00

170.00 ■

160.00

150.00

140.00

130.00

120.00

110.00

100.00

90.00

80.00

70.00

60.00

50.00

40.00

30.00

20.00

10.00

10J

■

Theo

0.00 50.00 100.00 150.00 200.00 250.00
Top-level Inferences

Figure 7.2: Cumulative Number of Theo Inferences versus Number of Top-
Level CAP Operations for Mason's Calendar

108

Total Inferences x 10'

65.00

3

Theo

0.00 20.00 40.00 60.00
Top-level Inferences

Figure 7.3: Cumulative Number of Theo Inferences versus Number of Top-
Level MN Inferences

109

econds x l(r

I Theo
1 OH 1MV1(J

0 (K

n on

n f.%.

n i^n

n ^

n ^n

nin

r

n "in

u.zu

Top-level Inferences
0.00 50.00 100.00 150.C 200.00 250.00

Figure 7.4: Time Elapsed During Top-Level CAP Operation for Mitchell:
Theo versus ISM()

110

seconds x l(r

Theo

I.JU loM()

I.4U

l.JU

l.ZU

1.1U

I.UU

u.yu

U.öU

u./u

U.OU

U.JU

U.4U

U.jU

U.2U

U.1U

u.uu

Top-level Inferences
0.00 50.00 100.00 150.00 200.00 250.00

Figure 7.5: Elapsed Time During CAP Operation for Mason: Theo versus
ISM()

111

seconds x 1(P

Theo

DALCHUCU-liSlVl^

O 00

0 9^

ft 7fi

U.DJ

U.OU

U.JJ

/

n 1^

Top-level Inferences
0.00 50.00 100.00 150.00 200.00 250.00

Figure 7.6: Time Elapsed During Mitchell's CAP Operation: Theo versus
"Extended" ISM()

112

seconds x l(r

1.50

1.40

1.30 ■

1.20

1.10

1.00

0.90

0.80

0.70

0.60

0.50

0.40

0.30

0.20

0.10

0.00

0.00

Theo

Extended-ISMÖ"

50.00 100.00 150.00 200.00 250.00
Top-level Inferences

Figure 7.7: Time Elapsed During Mason's CAP Operation: Theo versus
"Extended" ISMQ

113

In Figures 7.8 and 7.9, ISM's load-time optimization is combined with
run-time caching management. For this test, and those following, ISM does
not include the whentocache slot in its load-time optimizations - whenever
ISM manages caching, there is no need to infer whentocache slot values.
In this situation, ISM's load-time optimization does not increase Theo effi-
ciency, as Figures 7.4 and 7.5 show; hence, Figures 7.8 and 7.9 essentially
depict the isolated effects of ISM's caching strategy. As is evident from the
graph, the time savings resulting from ISM's caching strategy is very sig-
nificant, considering CAP's highly stable knowledge base - speedup is over
a factor of 2. This experiment shows that an intelligent caching scheme is
very useful even for stable knowledge bases. Also, note that ISM's caching
strategy, like its load-time strategy, saves the system global garbage-collect
time. This derives from the observation that ISM caches fewer values than
Theo. ISM lowers the space requirement of the system.

In Figures 7.10 and 7.11, ISM(cache) is compared with ISM(cache, EBG)
and ISM(cache, EBG, BEBG). It is clear that EBG and BEBG do not
increase CAP performance - the ISM(cache), ISM(cache, EBG)
and ISM(cache, EBG, BEBG) curves are virtually identical. However, this
was an expected consequence of CAP's domain characteristics. Indeed, in
this test, ISM never invokes EBG or BEBG. Interestingly, despite this, the
performance curves between ISM(cache, EBG, BEBG), ISM(cache, EBG),
and ISM(cache) do not differ significantly. This demonstrates that ISM's
sensing control is effective enough that the additional control and sensing
needed by ISM to manage EBG and BEBG are minor.

It would be useful to see how ISM's dynamic and static optimization
techniques work together. Unfortunately, as stated earlier, this is impos-
sible with Theo, since ISM's static analysis optimizes the same slots for
which Theo has built-in optimizations. Hence, to test interactions between
ISM's static and dynamic components, a variant of Theo called FlexTheo has
been implemented. FlexTheo disables Theo's built-in methods inferencing
optimization. Hence, although FlexTheo's methods are more configurable
than Theo's, FlexTheo is less efficient than Theo. FlexTheo's performance
is compared against Theo's performance in Figure 7.12. Using FlexTheo,
we can now determine how well ISM's static and dynamic optimizations
work together. In this experiment, ISM is embedded in FlexTheo. Then
FlexTheo's performance is compared with and without ISM on Mitchell's
CAP data. The results are shown in Figure 7.13. Note that ISM() speedup
up FlexTheo by over a factor of two. With ISM's run-time speedup mech-
anism management added, efficiency is increased about another factor of

114

seconds x KP

Theo

l.UU ioM(cacnej

u.yj

u.yu

U.S3

U.sU

U./j

u./u

U.OJ

U.oU

U.JJ

/ U.JU /
U.4J

U.4U

U.J5

U.JU

U.ZJ /'
U.iU

U.13

0.1U

U.UJ

u.uu

Top-level Inferences

0.00 50.00 100.00 150.00 200.00 250.00

Figure 7.8: Elapsed Time During Top-Level CAP Operation for Mitchell:
Theo versus ISM(cache)

115

seconds x 10

Theo

l5M(cacue)

i.ZU

ft Q.ft

0 60
_..•-"'

ft ^ft

0 °n / -

ft ftft

0. DO 50 00 IOC .00 15C .00 20C .oc) 25C
Top-level Inferences

.00

Figure 7.9: Elapsed Time During Top-Level CAP Operation for Mason:
Theo versus ISM(cache)

116

two. Overall, ISM speeds up FlexTheo by a factor of four. This data shows
that ISM's static and dynamic optimizations can be effective in combination
- they complement each other. Note that this experiment consists of only
about 90 top-level CAP operations. FlexTheo requires much more memory
than Theo. Because of this, it was possible to run FlexTheo for only a
limited time.

It would be interesting to pit ISM's static component against ISM's
dynamic component using FlexTheo. Unfortunately, ISM's sensing control is
designed for Theo, not FlexTheo. Consequently, ISM's dynamic component,
if isolated, does not perform well on FlexTheo. Essentially FlexTheo violates
some of the assumptions that ISM uses to manage overhead. ISM's static
component prunes the inference paths that violate these assumptions. Hence
ISM's run-time optimization works well with the load-time optimization,
but works poorly on its own, actually reducing FlexTheo's efficiency. This
presents more evidence that ISM's run-time and load-time optimizations are
synergistic.

The CAP domain testing shows that:

• ISM's load-time optimizations have a potentially very large effect. In
this case, when applied to only a small number of Theo's system slots,
this technique results in a speedup factor of over 2, as Figures 7.10
and 7.11 show.

• ISM's run-time management of caching leads to a significant speedup
even in a knowledge-base with very stable data. Because the data is
stable, the major cost associated with caching - TMS costs - are not
an issue. However, ISM's handling of caching reduces data storage
costs to such an extent that performance increases by a factor of 2.

•

•

ISM's caching sensing control is effective. The sensing needed for
caching is efficient enough that ISM realizes a significant net perfor-
mance increase, even in a domain whose characteristics are not well-
suited toward effective caching management.

ISM's EBG and BEBG sensing control is effective. Despite the inef-
fectiveness of both these mechanisms for this domain, the additional
sensing costs incurred by EBG and BEBG management are minor.

• ISM's dynamic and static optimizations can work well together. Us-
ing FlexTheo as a testbed, ISM's static and dynamic techniques each

117

seconds x 10 3

1.00

0.95

0.90

0.85

0.80

0.75

0.70

0.65

0.60

0.55

0.50

0.45

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

_.---
rs

,J-'
y

+s-*
^«.-*"

/ r •****"

Theo

iSM(cache)"

ISM(cache,EBG)

ISM(cache,EBG,BEBGJ"

0.00 50.00 100.00 150.00 200.00 250.00
Top-level Inferences

Figure 7.10: Elapsed Time During CAP Operation for Mitchell: ISM(cache)
versus ISM(cache, EBG) and ISM(cache, EBG, BEBG)

118

seconds x l(r

Theo

I.JU loM^cacnej

ISM(cache,EBG)
1.4U

, ISM(cache,EBG,BEBG)

1JU

l.zU

1.1U

l.UU

u.yu

U.aU

u./u
Jfr

-v.-

U.OU

/
/

U.JU y
I :/'"

U.4U

■■'

if.-'"

U.JU
^"

U.H)

4/
U.1U

u.uu

Top-level Inferences
0.00 50.00 100.00 150.00 200.00 250.00

Figure 7.11: Elapsed Time During Top-Level CAP Operation for Mason:
ISM(cache) versus ISM(cache, EBG) and ISM(cache, EBG, BEBG)

119

seconds

0.00 20.00 40.00 60.00 80.00
Top-level Inferences

Figure 7.12: Elapsed Time During Top-Level CAP Operation for Mitchell:
FlexTheo verses Theo

120

seconds

800.00

750.00

700.00

650.00

600.00

550.00

500.00

450.00

400.00

350.00

300.00

250.00

200.00

150.00

100.00

50.00

0.00

/

/••""

-C*=H"

/
,-' y—~~'

-+.*'■*■*
-.■***"

.••••-IS*-'
 ^^s"-**

.*™*

FlexTheo

isM'ö
ISM(cache)

ISM(cach~e,EBG)~

rSM(cache,EBG,BEBG)"

0.00 20.00 40.00 60.00 80.00
Top-level Inferences

Figure 7.13: Elapsed Time During CAP Operation for Mitchell: FlexTheo
with and without ISM

121

independently increase system efficiency by a factor of two, giving a
total speedup of a factor of four.

7.3.2 MN Experiments

The set of experiments run using the CAP domain were also run for the MN
domain. That is, ISM(), ISM(cache), ISM(cache, EBG) and
ISM(cache, EBG, BEBG) each executed a fixed sequence of MN inferences.

Figure 7.14 displays the effects of ISM's caching strategy in the dynamic
MN environment. This figure shows that, initially, ISM is less efficient than
Theo - ISM is determining an appropriate caching strategy. At about the
ninth top-level query, however, ISM's sensors have collected enough data for
ISM to initiate a good caching strategy, and from that point on, its caching
strategy increases system efficiency by a factor of about 1.4.

This graph demonstrates an interesting phenomenon. Why is ISM's per-
formance so jittery after the tenth top-level inference? Much of this spiky
behavior is a consequence of some inherent limitations to sensor accuracy.
Consider ISM's sensor that estimates the stability of a query instance Q.
Recall that this sensor operates by keeping a short history of the values of
Q, comparing consecutive values to give a probability that Q is stable. If
the values of a query instance are cached, this sensor is accurate. However,
if Q's values are not cached, under some circumstances the sensor is inac-
curate. Consider the following situation: assume Theo continually infers
the value of Q =(box area) by multiplying the values of (box width) and
(box length). Assume (box length) oscillates between two values, 2 and 4,
and (box width) oscillates at the same frequency between 2 and 1. This
means (box area) always equals 4, even though its contributors are unsta-
ble. If Q is cached, this instability is noticed, because when <Q's contributor
values change, Theo's TMS uncaches Q's value. However, if Q is not cached,
its contributor instability is not sensed. This sensor monitors a sequence of
4s, causing ISM to assume that Q's contributors are stable. This problem
stems from the fact that ISM estimates Q's contributor stability using <5's
stability.

The MN domain demonstrates this sensor limitation. This limitation
induces the following repeating ISM behavior:

• A cached address is determined to be unstable.

• The unstable address is uncached by ISM, resulting in speedup.

122

seconds

10.00

9.50

9.00

8.50

8.00

7.50

7.00

6.50

6.00

5.50

5.00

4.50

4.00

3.50

3.00

2.50

2.00

1.50

1.00

0.50

i!

1 '•- :
: •

k \ i i
-44—T-44-T- ^4_J__^_.

\ / \A A :: :''
' ':.; ';.: '::

I ! ''■'' ' ' '"' * H U 'i\i ''■■■

Theo
ISM(caciiej'"

Top-level Inferences
0.00 20.00 40.00 60.00

Figure 7.14: Time per Top-Level MN Inference: Theo versus ISM(cache)

123

• This address has repeating subsequent values, causing ISM to consider
the address stable.

• ISM caches the address, resulting in slowdown.

• ISM once again realizes that the address is unstable.

This kind of "sensor aliasing" makes ISM continually oscillate between caching
and uncaching a query instance. Because uncaching is actually the optimal
management strategy, ISM's performance suffers.

ISM's oscillatory behavior is an artifact of the MN domain. To demon-
strate ISM's performance without this sensor aliasing effect, ISM has been
tested in a synthetic domain. This "family" domain consists of the following
relationships:

daughters(x, d) :- children(x, d), female(d)
children(x, c) :- parents(c, x)
parents(x, p) :- father(x, p)
parents(x, p) :- mother(x, p)

The following query distribution and knowledge base update patterns
were used:

• (torn daughters) was continuously requeried at the top-level.

• After even queries, the following knowledge base modifications where
made:

1. (meghan father) = torn

2. (shannon father) = *novalue*

• After odd queries, the following knowledge base modifications where
made:

1. (meghan father) = *novalue*

2. (shannon father) = torn

This pattern shares MN's instability characteristic, but avoids the sensor
aliasing problem evident in MN. Figure 7.15 shows Theo and ISM(cache)
performance for this domain. As is evident, ISM's oscillation has been elim-
inated, resulting in a better ISM performance, with a steady-state speedup
factor of about 1.6, as shown in Figure 7.16. The spikes in this figure

124

result from Lisp ephemeral garbage collection. Notice that, because ISM
caches fewer values that subsequently need to be discarded by Theo's truth-
maintenance, ISM requires fewer garbage-collects than Theo - about half
as many. Note that garbage collection accounts for some of the ISM(cache)
spikes in the MN domain test. However, garbage collection is not evident
in any of the other tests. This results from the fact that in the other tests,
inferences are long enough that garbage collection is needed for every top-
level inference. Because garbage collection are fairly constant, no garbage
collection spikes are present.

In Figure 7.17, ISM manages EBG as well as caching. Because MN's
domain theory results in expensive rules, ISM's management of EBG should
not have a significant effect on efficiency. The data in Figure 7.17 supports
this prediction. As is the case for caching, ISM spends the first eight top-
level queries deciding on a strategy. At this point, ISM generates a rule
for the (repeated) top-level query, resulting in faster query responses. At
the twentieth top-level query, cheap sensing is initiated, further increasing
system speed. The sensor abasing discussed previously is also evident in
this experiment; ISM's performance oscillates. Although EBG results in
an expensive learned rule, the addition of EBG management to caching
nevertheless increases MN performance slightly, compared to only caching
management.

Figure 7.18 depicts ISM(cache, EBG, BEBG) performance. In this test,
as before, EBG is invoked during the eighth top-level inference, generating
a rule for the top-level query. MN's spiky query distribution ensures that
the rule is applicable. Unfortunately, because of the expensive nature of the
rule, the rule does not actually result in system speedup. However, during
the application of the expensive rule over the next five top-level inferences,
ISM realizes that the rule can be specialized via expensive variable instan-
tiation while still maintaining applicability. Hence, ISM applies BEBG to
the expensive rule at the thirteenth query, reducing its application cost. At
this point, the rule's cost becomes bounded and performance skyrockets.

Figure 7.18 depicts a performance slowdown around the twentieth top-
level inference. This is due to dynamics in the knowledge base. Specifically,
at this point in the experiment, data changes, making the previously learned
bounded-cost rule useless. I.e., the variable instantiation carried out by
BEBG has restricted the generality of the rule to such an extent that it can
no longer be used. Hence, top-level query instance twenty is inferred using
the more general, expensive EBG rule. However, MN's domain characteris-
tics cause ISM to later reinvoke BEBG at query instance 21, generating a

125

seconds

0.50

0.00

0.00 10.00 20.00 30.00 40.00 50.00
Top-level Inferences

Figure 7.15: Time per Top-Level Inference in a Dynamic Domain: Theo
versus ISM (cache)

126

seconds

Top-level Inferences
0.00 10.00 20.00 30.00 40.00 50.00

Figure 7.16: Cumulative Inference Time in a Dynamic Domain: Theo versus
ISM(cache)

127

seconds

0.50

ISM(cache)

ISM(cäche,'EBG'r

0.00 20.00 40.00 60.00
Top-Level Inferences

Figure 7.17: Time per Top-Level MN Operation: ISM(cache, EBG) versus
ISM(cache)

128

seconds

ISM(cache, EBG, BEBG)

JfSM(cäche"EBGJ

0.00 20.00 40.00 60.00
Top-Level Inferences

Figure 7.18: Time per Top-Level MN Operation: ISM(cache, EBG, BEBG)
versus ISM(cache, EBG)

129

new bounded-cost rule, applicable to the new state of the knowledge base.
At this point performance increases to its previous level.

The fortieth top-level inference in Figure 7.18 shows the same phe-
nomenon. This spike is larger due to some concurrent garbage collection
activity. Also note that this spike is wider - ISM needs more time to decide
to reinvoke BEBG. Why is this? At query 40, ISM has collected more rule
application data than at query 20. Because of the long-term nature of the
EBG/BEBG sensors, ISM is more likely to view the transient at query 40
as "noisy data" than at query 20. Essentially, as ISM gets older, it requires
more evidence of environment dynamics before it adapts. In any case, how-
ever, both these transients demonstrate the adaptive quality of ISM's BEBG
management strategy.

The MN experiments demonstrate the effectiveness of ISM's speedup
mechanism management. In this domain, unlike CAP, all three speedup
mechanisms are useful. These experiments show that ISM manages them
quite well. As ISM is given more mechanisms to manage, performance in-
creases. In Figure 7.19, ISM's cumulative time savings is shown when all
three speedup mechanisms are utilized.

7.3.3 Simulated Domain Experiments

Part of the attractiveness of ISM is its adaptivity. ISM is designed to be more
flexible than any fixed speedup mechanism management strategy. The MN
experiments have demonstrated a portion of ISM's flexibility - ISM detects
when bounded-cost rules become useless due to environment changes, and
reacts appropriately. Unfortunately, CAP and MN do not test other aspects
of ISM adaptivity. Consequently, simulated domains have been constructed
which address these issues.

To test caching adaptivity, the synthetic "family" domain relationships
were again used, but with different usage patterns. This domain has the
following query distribution and knowledge base update patterns:

• (torn daughters) is continuously requeried at the top-level.

• The following knowledge base update pattern is repeated:

1. For 10 queries, the knowledge base is stable with (meghan father)
= torn. No knowledge base modifications are made.

2. For 10 queries, the knowledge base is unstable, using the same
knowledge base update pattern as was used in Figure 7.15.

130

seconds

Theo

ISM(cache,EBG,BEBG)

Top-level Inferences

105.00

100.00

95.00

90.00

85.00

80.00

75.00

70.00

65.00

60.00

55.00

50.00

45.00

40.00

35.00

30.00

25.00

20.00

15.00

10.00

5.00

0.00 20.00 40.00 60.00

Figure 7.19: MN Elapsed Time: Theo versus ISM(cache, EBG, BEBG)

131

Hence, this test has the following characteristics:

• Recurring top-level query instance.

• Alternating periods of knowledge stability and instability.

An optimal caching strategy for the top-level query instance of this domain
would be: cache first ten queries, uncache next ten, cache next ten, etc. In
Figure 7.20, ISM's caching performance is shown. ISM's caching strategy
always converges to the optimal strategy during each 10-query cycle. This
figure, however, shows that ISM's caching management decisions are slightly
delayed relative to the optimal strategy. Obviously, this delay is caused by
the fact that ISM cannot detect environment dynamics instantaneously. It
is clear from this figure, however, that ISM is able to react very quickly to
environment dynamics - in this experiment, ISM adapts consistently within
two top-level inferences. This experiment is another demonstration of ISM's
ability to adapt quickly to dynamic conditions.

7.4 Summary

The experimental results in this chapter show that

• ISM's speedup mechanisms management strategy is effective across
domains with widely varying characteristics. ISM utilizes speedup
mechanisms with enough facility to significantly increase Theo effi-
ciency in both the CAP and MN applications. Moreover, ISM does
not invoke speedup mechanisms when they are inappropriate. This
means that ISM's utility calculations and estimates are effective.

• ISM's dynamic and static optimizations operation work well in com-
bination. They optimize different aspects of the system; hence, com-
bining techniques is effective.

• ISM is able to adapt to changes in the environment, showing that
ISM's speedup mechanism management strategy is more flexible than
any fixed strategy. The MN and synthetic domain tests demonstrate
that ISM responds to knowledge base dynamics by modifying its man-
agement strategy in a timely and effective fashion.

• ISM's load-time optimizations are effective. Even when applied to only
a fraction of Theo's system slots, CAP performance increases by more
than a factor of two.

132

seconds

5.00

4.50 ■

4.00

3.50

3.00

2.50

2.00

1.50

1.00

0.50

0.00

0.00

fill * I *t

Theo

iSM(cacHej"

Top-level Inferences
50.00 100.00

Figure 7.20: Time per Top-Level Inference in an Oscillatory Domain: Theo

versus ISM(cache)

133

seconds

0.00 50.00 100.00
Top-level Inferences

Figure 7.21: Elapsed Time in an Oscillatory Domain: Theo versus

ISM(cache)

134

• ISM's overhead management works well. Sensing overhead is con-
trolled - increasing the number of speedup mechanisms managed by
ISM does not significantly decrease architecture performance even
when such mechanisms are not useful (i.e., the CAP domain). Fur-
thermore, ISM's sensing control allows it to take advantage of such
mechanisms when they are useful, as in the MN domain.

135

Chapter 8

Related Work

In this chapter, research relating to learning mechanism management and
inference mechanism optimization is discussed.

8.1 Learning Mechanism Management

The utility problem [Minton 88], in its broadest form, states that that in-
appropriate learning can degrade the performance of an architecture. Re-
searchers have applied the following techniques to handle this problem:

• Utility analyses

• Expressiveness restrictions to bound the costs associated with learning

Only recently have researchers begun to investigate multiple learning
mechanism management. A framework for handling multiple learning mech-
anisms has emerged:

• Goal-Driven Learning (GDL)

These strategies and their relationship to the scheme that this thesis
presents are discussed in this section.

8.1.1 Utility Analyses

The initial response to handling the utility problem was to employ util-
ity analyses. Such analyses are used to ensure that learning will actually
increase architecture performance - a speedup mechanism is invoked only

136

when its utility is positive. Hence, utility analyses provide a means of manag-
ing learning mechanisms by causing learning mechanisms to be applied selec-
tively. This strategy has been used successfully and extensively [Etzioni 90]
[Gratch 92] [Greiner 92].

In a similar scheme, some systems [Minton 88] compute rough initial
utility estimates of the speedup mechanism, then refine these estimates at
run-time. This allows the system to determine more accurately such quan-
tities as application-time of an EBG rule, for example.

The most important difference between this approach and that of ISM's
is that this approach does not consider multiple speedup mechanisms. For
instance, [Minton 88] [Etzioni 90] [Gratch 92] [Greiner 92] consider utility
for only explanation-based learning. Hence, the problem of managing mul-
tiple speedup mechanisms is not confronted. ISM handles the more general
problem of multiple mechanism management, which raises the following is-
sues:

•

•

Interactions between speedup mechanisms: Which mechanism or mech-
anisms should be applied, if more than one is potentially appropriate in
a given situation? Do the mechanisms interfere? Are they synergistic?

Overhead management: managing multiple mechanisms usually re-
quires more sensing and more decision-making, increasing overhead.
How can be ensure that this overhead does not swamp the system?

Much of the utility analysis research (e.g., [Gratch 92], [Greiner 92]) as-
sumes the existence of a set of samples that are representative of the entire
actual problem distribution. These kinds of analyses attempt to optimize
speedup mechanism use. In this approach, the utility analyses are essen-
tially conducted off-line. These analyses are not well-suited to environment
dynamics, since any such analysis is fixed. Modifying the strategy to account
for environment dynamics requires offline retraining. The goals of this thesis
are different - ISM does not attempt to optimize speedup mechanism use,
it merely seeks to guarantee architecture speedup. For this research, adap-
tivity - reacting to changes in the environment, such as query distribution
shifts and changes in knowledge stability - is considered more important
than optimality.

8.1.2 Restricting Expressiveness

One way to guarantee that speedup mechanisms cannot result in decreased
architecture efficiency is to ensure that the costs associated with applying

137

a mechanism - and using its results - are negligible. One example of this
technique is the use of unique attributes in chunking [Tambe 91], which
reduces the match cost of rule application.

Such techniques can be useful [Brachman 85] [Patel-Schneider 84] [Kacz 86],
but can also reduce the effectiveness of the speedup mechanisms. Moreover,
the focus of such techniques is very different than the focus of this thesis.
Rather than ensuring that speedup mechanisms cannot "hurt" the system,
this thesis seeks to use them appropriately. Speedup mechanism effectiveness
need not be decreased. The "restricting expressiveness" approach handles
the cost-benefit tradeoff of speedup mechanisms by minimizing their costs
so effectively that the mechanisms can be used all of the time. Unfortu-
nately, this also reduces their benefits. The ISM approach does not try
to make speedup mechanisms "universal-applicable." It handles the cost-
benefit tradeoff by applying speedup mechanisms only when the benefits
outweigh the costs. Furthermore, as in the case of [Tambe 91], restricting
expressiveness is used for only single speedup mechanisms.

8.1.3 Goal-Driven Learning

In the Goal-Driven Learning (GDL) [Cox 94] [Gratch 94] [Ram 94] paradigm,
the goals of the system are used to make decisions about when and where
learning should occur, and which learning strategies are appropriate for a
given situation. The effectiveness of GDL depends on the system's ability
to make these decisions. GDL systems typically support multiple learning
mechanisms; hence, at an abstract level, the goal of GDL is similar to that
of this thesis: flexible management of learning mechanisms.

The operation of GDL systems typically consists of three subtasks:

• Blame assignment

• Deciding what to learn

• Strategy selection

In this paradigm, the architecture is given a task. As it performs this task,
it maintains a trace reflecting its reasoning process. At a suitable point,
the trace is evaluated relative to the architecture's goals. If any failures
have occurred, learning is needed to avoid similar problems in the future.
Blame assignment determines an explanation of the failure. From this, the
system can determine the learning goals which, if achieved, can reduce the
likelihood of repeating the failure. Given the learning goals, the architecture

138

decides which learning algorithm to employ by reasoning about the relative
merit of alternative learning strategies in the current situation.

How does the GDL paradigm relate to that of this thesis? ISM makes its
decisions based on statistics from many traces. GDL makes choices based
on single traces.

Moreover, GDL and ISM conduct learning mechanism management in
very different ways. This thesis assumes that architecture environments can
be unstable, and that effective learning mechanism management requires
real-time adaptivity to environment dynamics. Hence, this thesis conducts
its management decisions on-line - during the performance task. On the
other hand, GDL systems assume the ability to reflect on system perfor-
mance, examining past execution traces. This have been done off-line to pre-
serve performance. Note that any off-line learning mechanism management
strategy cannot, in general, adapt in real-time to environment dynamics.
Such systems require time between environment changes to determine new
management strategies. Similarly, some systems determine learning strate-
gies based on fixed domain characteristics, such as fixed query distributions,
and also cannot adapt to environment dynamics in real time. Examples of
systems with this characteristic include [Cox 94] [Ram 94] [Gratch 94].

Furthermore, on-line learning mechanism management necessitates the
confrontation of issues such as overhead management and sensing control,
to ensure that the execution cost of the management mechanism itself is
small. GDL does not address these issues.

Although GDL systems typically manage multiple learning mechanisms,
in general, they do not support "competing" learning mechanisms. That
is, for a given situation, at most one learning mechanism can be applied
- the mechanisms apply to different situations. Consequently, choosing be-
tween algorithms is straightforward. For example, in Michalski's Multistrat-
egy Task-Adaptive Learning framework [Michalski 91], learning mechanism
management is handled as follows: the relationship between input given to
the system and the system's background knowledge specifies what learning
algorithm to use. More precisely,

• If the input is not entailed by the system's background knowledge,
constructive induction is applied.

• If the input is implied by, or implies a part of the background knowl-
edge, analytic, learning is applied.

• If there is a high-level similarity between the input and the background

139

knowledge, analogical learning is applied.

Because Michalski's framework utilizes learning mechanisms with distinct
"domains of applicability," the management task is relatively trivial. Sys-
tems sharing this characteristic can be found in [Cox 92] [Cox 94] [Kocabas 94]
[Earl 94] [Cox 91] [Spears 91] [Holder 91].

In contrast, this thesis considers the more difficult problem of managing
"competing" learning mechanisms. ISM manages three mechanisms, all of
which might be applicable to a situation, making the management task much
more complex.

8.2 "Static" Inference Mechanism Optimization

Theo's behavior is programmed, or specified, via its knowledge base. ISM's
static inference mechanism optimization scheme analyzes this "program,"
constructing an inference boundary. Any inference outside this boundary at
guaranteed fail. ISM prunes such inferences, increasing efficiency.

In some sense, this scheme is a form of compilation. Essentially, this
algorithm "compiles" the architecture. That is, the algorithm takes as input
a description of the architecture's operation, and restructures the system to
operate more efficiently.

Perhaps because learning architectures have developed relatively recently,
there has been virtually no work done in the "architecture compilation"
area. However, because ISM's algorithm operates only if the system behav-
ior specification is declarative, the algorithm could be considered a form of
knowledge compilation. In particular, ISM's algorithm can be considered a
form of partial evaluation; it produces a "specialized architecture" by incor-
porating knowledge about restrictions on system inputs. That is, through
ISM's knowledge base analysis, ISM "knows" the inputs - knowledge base
values - relevant to the system's behavior, and assumes that these inputs
are stable. These values determine the inference optimizations that ISM can
perform.

Although ISM's algorithm is similar to forms of compilation, there are
differences. Compilation typically translates a declarative specification into
a more efficient, procedural form [Keller 91]. ISM's algorithm, however,
does not generate a non-declarative procedure. Instead, it generates an-
other declarative specification that guides the pruning of Theo's inference
process. Because this description is declarative, it is modifiable at run-time,

140

and such modifications do not require any recompilation. That is, in a typi-
cal compilation process, any "code" modification - in this case, architecture
specification modification - requires recompilation to incorporate the modi-
fications into the system's operation. In contrast, ISM's algorithm generates
a high-level specification rather than a low-level procedure. Theo interprets
this specification to prune search. Hence, to incorporate any modifications
to the architecture behavior specification, it is only necessary to modify the
ISM-generated specifications. Since these specifications are interpreted by
Theo, Theo's operation reflects these modifications immediately, without re-
compilation. Consequently, ISM's algorithm provides more flexibility than
forms of compilation.

ISM currently does not take advantage of this flexibility - it assumes the
stability of certain knowledge base values - values specifying architecture
operation - and if these values are modified, the algorithm must be rein-
voked. However, this assumption can be relaxed. Sensors can be embedded
into the system monitoring for modifications to the architecture specifica-
tion values. If any of these values change, the specifications guiding the
inference pruning process can be modified appropriately.

Etzioni's STATIC [Etzioni 90] system has some similarities to ISM's
load-time optimization technique. As its name implies, STATIC increases
architecture efficiency using a static analysis of the architecture's domain
theory. EBL [Minton 88] is applied on rules which have a particular char-
acteristic: they must be non-recursive. Hence, STATIC works by analyzing
the form of the domain theory.

On the other hand, ISM exploits the inference search boundary defined
via its knowledge base analysis. This boundary is not delimited by the form
of the domain theory. Rather, it is dependent on the locations where relevant
data initially resides. In effect, ISM relies on the structure of the knowledge
base to optimize inference.

8.3 Summary

The following is a summary of the characteristics of this research that dis-
tinguish it from other research in the field.

• Manages multiple, "competing" speedup mechanisms.

• Computes utilities "on-line," ensuring adaptivity.

• Explicitly confronts overhead issues.

141

• Trades off architecture flexibility for efficiency where possible by an-
alyzing the structure of the knowledge-base to prune unnecessary in-
ference.

142

Chapter 9

Conclusion

This thesis investigated ways in which system efficiency can be increased.
Two strategies for increasing architecture performance were examined:

• Architecture-controlled management of speedup mechanisms

• Increasing system inference efficiency via control knowledge derived
from "static" knowledge base analyses

The system that explores these issues - ISM - uses the Theo learning archi-
tecture as an experimental testbed.

This chapter summarizes the important issues and results from the the-
sis, and presents future areas of research.

9.1 Automatic Speedup Mechanism Management

To manage speedup mechanisms effectively, the architecture must be able to
determine which, when, and where the different mechanisms should be ap-
plied. This problem is made more complex by the possibility that the archi-
tecture's environment can change, and any competent management strategy
must be able to respond appropriately and quickly to such changes. How
can this be done? ISM takes the following approach: an agent is embedded
into the architecture, and continually observes its operation. The agent is
responsible for managing the architecture's speedup mechanisms. For such
an agent to operate successfully, the following issues must be resolved:

• How does the agent make its decisions?

143

• How can the agent overhead costs be minimized?

These issues are examined in turn.

9.1.1 Decision Criteria

ISM bases its management strategy on two elements:

• Speedup mechanism utility analysis

• Application criteria

Utility Analysis

ISM must know how useful a speedup mechanism is in a given situation for it
to make effective management choices. Speedup mechanism utility analyses
give ISM that information. To generate utility analyses, this thesis uses the
following strategy:

•

•

•

Determine the characteristics that affect the utility of each of the
speedup mechanisms

Determine each mechanism's ideal utility - utility given perfect and
complete knowledge about the architecture's operation

Design implementable sensors that can reasonably approximate the
information needed by the ideal utility formulas

• Modify the ideal utility formulas to use "real" data generated from the
sensors instead of the unavailable perfect/complete data

With this strategy, the accuracy of ISM's utility estimates can be easily
judged - the strengths and weaknesses of ISM's estimates are simple to
determine. Because this analysis makes explicit the effects of sensor design
compromises on utility calculations, the task of making tradeoffs - such as
sensor efficiency versus accuracy - is also simplified.

Using Utility Estimates

ISM's utility formulas for a mechanism are calculated independent of the
other mechanisms. Consequently, it is unclear how to use these estimates.
Using an aggressive strategy, ISM would invoke all mechanisms whose util-
ities were positive. With a conservative approach, ISM would invoke the

144

single speedup mechanism with the largest estimated utility. Both these
approaches have problems, however. The former can lead to interactions
which decrease system efficiency, while the latter is overly restrictive.

ISM uses a strategy that allows it to simultaneously invoke mechanisms
that cannot interact in a negative manner. If there are potential interaction
problems, ISM invokes only the mechanism with the largest utility. Hence,
this strategy combines the advantages of the aggressive and conservative
approaches.

9.1.2 Overhead Management

Assuming that ISM's management decision criteria are sound, one would
normally expect architecture efficiency to maximize as the percentage of
query instances for which ISM manages speedup mechanisms approaches
100%. However, this is not the case. This speedup mechanism management
strategy is expensive; sensing and utility calculation overhead can actually
decrease system performance, even with good management decisions. To
manage overhead, ISM uses two techniques: adaptive sensing and phasic
sensing.

Adaptive Sensing

A thorough examination of Theo's inference mechanism reveals that the
speedup mechanisms handled in this thesis are useful only under certain
conditions. If sensing and utility calculations were limited to query in-
stances that satisfy these conditions, a significant amount of overhead could
be reduced. This is the basis of ISM's adaptive sensing strategy. However,
because the query instances for which these conditions are true continually
change, a second set of sensors are needed to determine when ISM's sen-
sors need to be applied. Hence, this strategy involves a sensing trade-off.
ISM's expensive utility calculation sensing is reduced, but other sensing is
increased.

Phasic Sensing

Phasic sensing is based on the observation that architecture operation tends
to stabilize after some time. That is, after an initial "transient" period, ISM
management strategy needs to be modified only rarely. Note that this is not
necessarily true at the user-defined ground level. However, it is true at the
system-level. Because the system level tends to dominate the ground level,

145

in general, this assertion is true. Hence, phasic sensing control consists of
two phases:

• Decision phase: phase during which ISM operates normally

• Error-detection phase: ISM stops managing speedup mechanisms, re-
lying on previous management decisions. This can drastically reduce
sensing costs. To ensure adaptivity, however, ISM monitors for "seri-
ous" management decision errors. If enough such errors are detected,
ISM transitions back to the decision phase.

Because sensing for serious management errors is much cheaper than full
sensing or even adaptive sensing, this strategy is very effective at reducing
ISM overhead.

9.2 "Static" Inference Mechanism Optimization

Any inference engine's inference mechanism consists of a search through
the knowledge base to find data relevant to the query instance. In some
systems, such as Theo, this search can be very inefficient, exploring many
unsuccessful paths. Theo's inefficiency results directly from its uniformity
and flexibility. Because Theo's behavior is not "hard-coded," Theo must
initiate many system-level inferences to determine its operation. Because
of Theo's uniformity, these inferences do not terminate immediately - they
result in other inferences.

Flexibility and uniformity in a learning architecture can be very valu-
able. However, as Theo demonstrates, such traits have a high price - poor
efficiency. ISM uses a technique to increase efficiency without sacrificing
flexibility and uniformity. By examining the system knowledge-base prior
to run-time, ISM determines the situations under which various search paths
cannot succeed. The inference methods of sets of query instances and the
locations of relevant query instance values reveal this information. At run-
time ISM uses this data to prune Theo's inference search paths, increasing
efficiency. This scheme is able to adapt to the requirements of the domain.
Domains requiring flexibility will not be hampered. Domains not requiring
flexibility will execute more efficiently.

9.3 Performance

ISM has been tested in two domains with widely varying characteristics:

146

CAP: Stable knowledge base, uniform query distribution, widely varying
query instance inference structures, complicated inferences, high per-
centage of novel system-level inferences

MN: Unstable knowledge base, spiky query distribution, similar query in-
stance inference structures, simple inferences, very few novel system-
level inferences

In the CAP domain, Theo with ISM outperformed Theo by about a
factor of 2. In the MN domain, after an initial "training period," Theo with
ISM outperforms Theo by more than a factor of 12. ISM's effectiveness is
not specific to domains with very particular characteristics; it appears to be
generally useful.

ISM has also been tested in a domain with oscillatory characteristics.
Its performance in this domain shows that ISM is adept at responding to
environment changes.

9.4 General Lessons

Although ISM has been implemented only in Theo, and hence has many
Theo-specific characteristics, this purpose of this thesis was to investigate
the broader, general issues involved with automatic speedup mechanism
management and inference mechanism optimization techniques. This section
summarizes the features for which ISM is most useful, and identifies system
and domain characteristics upon which ISM relies.

9.4.1 Automatic Speedup Mechanism Management

Architectural Features

The following architectural features are needed to implement an ISM-like
embedded agent system:

• Ability to embed sensors and effectors into the architecture. Without
this ability, an embedded agent cannot observe architecture operation
and cannot invoke operations to increase system efficiency.

• Ability to monitor relevant data. For an agent to make reasonable
decisions, it must have reasonably accurate data from which to base
its decisions. Some of ISM's sensors are built into Theo - such as
Theo's explanation facility. Other sensors have been fabricated.

147

• Ability for agent to operate efficiently. As ISM's experiments show, it
is imperative that agent overhead be low. Some form of sensing control
may be needed, such as ISM's adaptive/phasic sensing. A more radical
solution would be to parallelize the agent and architecture operation.
Efficient agent operation usually implies that it is necessary to be able
to implement simple, inexpensive, accurate sensors. Likewise, utility
calculations must be fast. Furthermore, if sensing control is needed,
the architecture operation must be such that effective sensing control
is possible. For instance, adaptive sensing is very effective for ISM
because of Theo's high percentage of meta-level inference. For another
architecture, that strategy may not be useful.

The following architectural characteristics increase the effectiveness of
an ISM-like system:

• One or more speedup mechanisms. The larger the set of available
speedup mechanisms, the more useful an ISM-like agent is. Numerous
speedup mechanisms can become very difficult to manage well via
any other technique, due to the large number of options available,
and possible interactions between mechanisms. However, an ISM-like
agent could very well be useful for even a single speedup mechanism,
if it is prone to utility problems.

• Simple default speedup mechanism management approach. It is un-
likely that any simple management approach, such as Theo's, makes
good use of the available mechanisms. Hence, it becomes more likely
that a more sophisticated strategy, such as ISM, would increase system
performance.

• Complicated operation. Complicated systems are difficult for anyone
to tune. It becomes impossible to grasp all the information necessary
to optimize speedup mechanism usage, especially for multiple domains
with differing characteristics. In such cases, automated management
is the only way to tune speedup mechanisms at a fine grain.

Speedup Mechanism Features

Speedup mechanism characteristics can have a dramatic effect on the efficacy
of an ISM-like system. Some speedup mechanism features that increase the
usefulness of ISM are given below.

148

• Mechanism has high cost if used inappropriately. Theo's caching,
EBG, and BEBG have this feature. Without any cost, mechanisms
can always be applied without degrading system performance.

• Mechanism has high-risk/high-payoff characteristic. Any fixed man-
agement strategy is not likely to utilize such potentially expensive
mechanisms. The chances of such mechanisms "backfiring" is too
large. However, because an ISM-like agent can analyze risk/payoff
tradeoffs well, it can manage such mechanisms effectively, making use
of their high payoffs.

• Available mechanisms are useful in different situations. An ISM-like
agent has the opportunity to combine the strengths of all the algo-
rithms. If they are strong in the same situations, the ability to choose
between mechanisms is not useful.

• Inexpensive to estimate mechanism utility. If utility calculations are
too time-consuming, management overhead will overwhelm any effi-
ciency gains.

Domain Features

Some domain features that make automatic speedup mechanism manage-
ment particularly effective are:

• Dynamic environment. An ISM-like agent can adapt to environment
dynamics, resulting in performance superior to any fixed management
scheme.

• Quasi-stable environment. It is helpful if domain dynamics are not too
abrupt. This allows sensors to track the changing factors necessary in
determining speedup mechanism utility.

• Complicated operation. Complex domains are difficult for humans to
tune.

• Domain not well suited to default speedup mechanism management
strategy. If the default architecture management strategy is fixed, the
characteristics of some domains may cause the applied mechanisms
to actually reduce system efficiency. For example, in a very dynamic
domain, caching all query instances (by default) may slow the system
down.

149

9.4.2 Static Inference Optimization

Architectural Features

ISM's static inference optimization technique is most useful for architectures
with the following characteristics:

• Uniformity and flexibility. These features tend to cause the architec-
ture to explore many potentially unsuccessful search paths.

• No mechanism that decreases amount of unsuccessful search over time.
These mechanisms "compete" with the static optimization technique,
limiting its usefulness. Caching is potentially such a competing mech-
anism - when queries are repeated and knowledge base values are
stable, caching reduces search very effectively, obviating the need for
static optimization.

• Declaratively represented inference methods. Such a characteristic would
allow broader applicability of the optimization technique.

Domain Features

ISM's static inference optimization technique is most useful for domains with
the following characteristics:

• High percentage of novel inference. Novel inferences tend to result in
more knowledge-base search, increasing the likelihood that the infer-
ence optimization technique would be useful.

• No modification of optimized query instance values. In domains with-
out this feature, any static analysis becomes invalid, rendering the
optimization technique useless.

9.5 Future Work

Automatic Speedup Mechanism Management

• Augment ISM to handle additional speedup mechanisms - ISM cur-
rently handles only a small set of the existing speedup mechanisms.
Moreover, the mechanisms handled by ISM are very similar in a sense.
Handling radically different mechanisms might give ISM much more
speedup leverage. Understanding the effects of speedup mechanism
characteristics on an ISM-like agent could be very interesting.

150

• Apply learning to ISM - In some sense, ISM's power is very limited
because it tends to make very small-scale management decisions. The
ability to generalize well - using learning mechanisms - could radically
alter ISM's performance.

• Consider user-architecture interactions - Giving ISM the ability to
interact with the user could drastically increase ISM's power. This
interaction would allow ISM to loosen its restrictions, and base its
goals on the needs of the user, giving it latitude to try many additional
kinds of speedup strategies.

"Static" Inference Optimization

• Automated handling of methods - ISM currently handles only a few
methods. It would be useful to investigate the means to give ISM
the capability to analyze methods autonomously, given, say, declar-
ative descriptions of methods. This would dramatically increase the
generality - and effectiveness - of this technique.

151

Bibliography

[Brachman 85] Brachman, R., Gilbert, P., and Levesque, H.
An Essential Hybrid Reasoning System: Knowledge and Sym-
bol Level Account of Krypton.
In Proceedings of the Ninth International Joint Conference on
Artificial Intelligence, pages 532-539. 1985.

[Cox 91] Cox, Michael and Ashwin, Ram
Using Introspective Reasoning to Select Learning Strategies
In Proceedings of the First International Workshop on Multi-
strategy Learning, pages 217-230, Center for Artificial Intelli-
gence, George Mason University, 1991

[Cox 92] Cox, Michael and Ram, Ashwin
Multistrategy Learning with Introspective Met a-Explanations
In Machine Learning: Proceedings of the International Work-
shop, pages 123-128. ML92, Morgan-Kaufman, 1992

[Cox 94] Cox, Michael and Ram, Ashwin
Choosing Learning Strategies to Achieve Learning Goals
In AAAI-94 Spring Symposium Series: Goal-Driven Learning,
pages 12-21

[Earl 94] Earl, Charles and Firby, James
An Integrated Action and Learning System
In AAAI-94 Spring Symposium Series: Goal-Driven Learning,
pages 22-27

[Etzioni 90] Etzioni, Oren
A Structural Theory of Search Control.
Ph.D. thesis, Computer Science Department, Carnegie Mellon
University, 1990.

152

[Gratch 92] Gratch, Jonathan and DeJong, Gerald
COMPOSER: A Probabilistic Solution to the Utility Problem
in Speed-Up Learning
In Proceedings from the Tenth National Conference on Ariti-
ficial Intelligence, pages 235-240. AAAI-92, MIT Press, 1992

[Gratch 94] Gratch, Jonathan, DeJong, Gerald, and Chien, Steve
Deciding When and How to Learn
In AAAI-94 Spring Symposium Series: Goal-Driven Learning,
pages 36-45

[Greiner 92] Greiner, Russell and Jurisica, Igor
A Statistical Approach to Solving the EBG Utility Problem.
In Proceedings from the Tenth National Conference on Ariti-
ficial Intelligence, pages 241-248. AAAI-92, MIT Press, 1992

[Holder 91] Holder, Lawrence
Selection of Learning Methods Using an Adaptive Model of
Knowledge Utility
In Proceedings of the First International Workshop on Multi-
strategy Learning, pages 247 -256, Center for Artificial Intelli-
gence, George Mason University, 1991

[Kacz 86] Kaczmarek, T., Bates, R., and Robbins, G.
Recent Developments in NIKL.
In Proceedings of the Fifth National Conference on Artificial
Intelligence, pages 978-985. 1986.

[Keller 91] KeUer, Richard
Applying Knowledge Compilation Techniques to Model-Based
Reasoning.
IEEE Expert, 6(2):82-87, 1991

[Kocabas 94] Kocabas, Sakir
Goal Directed Discovery and Explanation in Particle Physics
In AAAI-94 Spring Symposium Series: Goal-Driven Learning,
pages 54-61

[Laird 87] Laird, J., Newell,A., and Rosenbloom, P.
SOAR: An Architecture for General Intelligence.
Artificial Intelligence 33(l):l-64, September, 1987.

153

[Michalski 91] Michalski, R.
Inferential Learning Theory as a Basis for Multistrategy Task-
Adaptive Learning
In Proceedings of the First International Workshop on Multi-
strategy Learning, pages 3-18, Center for Artificial Intelligence,
George Mason University, 1991

[Minton 87] Minton, S., CarboneU, J., Etzioni, 0., Knoblock, Ca., Kuokka,
D
Acquiring Effective Search Control Rules: Explanation-Based
Learning in the PRODIGY System.
In Langley, P. (editors), Proceedings of the Fourth Inter-
natinoal Workshop on Machine Learning. Morgan-Kaufmann,
Irvine, June, 1987.

[Minton 88] Minton, Steve
Learning Effective Search Control Knolwedge:
An Explanation-Based Approach.
Ph.D. thesis, Computer Science Department, Carnegie Mellon
University, 1988.

[Mitchell 86] Mitchell, T., Keller, R., and Kedar-Cabelli, S.
Explanation-Based Generalization: A Unifying View.
Machine Learning 1(1), 1986

[Mitchell 91] Mitchell, T., et al
Theo: A Framework for Self-Improving Systems
In Architectures for Intelligence, K. VanLehn, Ed., Erlbaum,
1991

[Mitchell 93] Mitchell, T., et al
TheoGT
November, 1993
Internal Theo Project Working Paper.

[Mitchell 94] Mitchell, T., et al
Experience With A Learning Personal Assistant.
In Communications of the ACM, 1994.

[Patel-Schneider 84] Patel-Schneider, P.F.
Selective Backtracking.

154

In Clark, K. L. and Tarnlund, S. A. (editor), Logic Program-
ming. Academic Press, New york, New York, 1982.

[Ram 94] Ram, Ashwin and Leake, David
A Framework for Goal-Driven Learning
In AAAI-94 Spring Symposium Series: Goal-Driven Learning,
pages 1-11

[Spears 91] Spears, William and Gordon, Diana
Adaptive Strategy Selection for Concept Learning
In Proceedings of the First International Workshop on Multi-
strategy Learning, pages 231-246, Center for Artificial Intelli-
gence, George Mason University, 1991

[Tambe 91] Tambe, Milind
Eliminating Combinatorics from Production Match
Ph.D. thesis, Computer Science Department, Carnegie Mellon
University, 1991.

155

